Ultrasound-Enhanced Drug Delivery for Treatment of Onychomycosis
Alina Kline-Schoder1, Zung Le2, and Vesna Zderic1
1Department of Biomedical Engineering, The George Washington University
2Pediatrics, Medical Faculty Associates, The George Washington University

PURPOSE
Onychomycosis is a fungal nail disorder that is characterized by thick and yellow nails that can be extremely painful and lead to psychosocial issues. The majority of patients report being embarrassed about their nails. In onychomycosis, the fungus lives in the nail bed. Due to the poor permeability of the nail, current antifungal drugs, which are applied to the top of the nail, are unable to reliably reach the nail bed, making them ineffective in treating the fungus. The objective of this study is to use low intensity ultrasound to promote the permeability of the nail.

Fig. 1: Toenail with onychomycosis and nail cross section

DISSATISFACTION WITH CURRENT TREATMENT
- As of 2009, 32 million Americans have onychomycosis.
- Around a quarter of diabetes patients have onychomycosis.
- Diabetics with onychomycosis have a greater risk of cellulitis, ulceration and gangrene.
- The best oral drug has to be taken for over 6 months, has a failure rate greater than 31%, and is associated with dangerous side effects such as elevated liver function tests and hepatitis.
- The other treatment is a nail-polish drug that has only non-serious, infrequently reported side effects, but its cure rate is only 36% after 6 months of daily application.

Fig. 2: Experimental setup for luminosity and diffusion cell experiments
- Pig feet were obtained from Sioux Supreme Company, and the nails were separated using a scalpel and razor before being stored at 1.6°C.
- Both setups were placed in a water bath at body temperature.
- Temperature was measured at all frequencies for each experiment.
- A planar ultrasound transducer was used to vibrate the nails using a range of ultrasound parameters.
 - Frequencies: 400 kHz, 600 kHz, 800 kHz, 1 MHz
 - Intensity: 1+0.5 W/cm²
 - Duty cycle: 100% (continuous) for a duration of 5 minutes

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>Luminosity Intensity (W/cm²)</th>
<th>Diffusion Cell Intensity (W/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>1.64</td>
<td>0.64</td>
</tr>
<tr>
<td>600</td>
<td>3.64</td>
<td>0.54</td>
</tr>
<tr>
<td>800</td>
<td>3.96</td>
<td>1.05</td>
</tr>
<tr>
<td>1000</td>
<td>0.96</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Fig. 3: Luminosity intensity of luminosity and diffusion cell experiments

LUMINOSITY EXPERIMENT METHODS AND MATERIALS
- Pieces of porcine nail were placed in a 100 mL beaker, 35 cm beneath the ultrasound transducer.
- The beaker was then filled with the blue dye, which has a molecular weight of 792.84 g/mol and its nail polish drugs used.
- Pictures of the nails facing upwards, downwards, and their cross sections were taken.
- The image of the cross section was then analyzed in Photoshop to compute the average brightness and thereby diffusion into the nail.
- On the scale used by Photoshop, 250 represents a pure white picture and 0 represents a pure black picture. This number (N) was adjusted to obtain the Luminosity value (V) as follows: V=10^N/b

Fig. 4: Sample pictures taken of nail exposed to dye solution and ultrasound

DIFFUSION CELL MATERIALS AND METHODS
- The donor compartment was filled with blue dye and the receiving compartment is filled with saline.
- The nails were placed in an adaptor between the donor and receiving compartment.
- Ultrasound was applied 8.5 cm above the nail.
- After allotted time of application of ultrasound, the nail sat with dye to total 60 min dye exposure.
- After 60 min dye exposure the permeability of the nail was measured by the absorption of the liquid in the donor compartment.

Fig. 5: Luminosity values at different ultrasonic frequencies

RESULTS
- Our data indicated that application of low-intensity ultrasound can lead to increased permeability of the nail.
- A higher frequency corresponded to more permeation through the nail.
- Temperature increases as determined by PZFlex and thermocouples were found to be under 1.5°C, and are expected to be safe in future applications in patients.

Fig. 6: Luminosity nail cross sections shown at various frequencies

Fig. 7: Diffusion results from Diffusion Cell Experiments

FUTURE STUDIES
- We plan to use mycotic human nails, which are removed as part of normal treatment, in the diffusion cell setup.
- Instead of the blue dye used in current experiments, the nail polish drug that is currently used in clinical treatment will be used in future experiments.
- The parameters for ultrasound will be optimized within those deemed safe for humans.

Fig. 8: Temperature increase throughout ultrasonic application

CONCLUSIONS
If proven successful our method may find a clinical application due to the non-invasive nature of therapeutic ultrasound treatment. Our results show a clear correlation between the application of ultrasound at increasing frequency and permeability of the nail. This suggests that our methodology may have a place in the clinical field and the ideal parameters may be found at a higher frequency. Additionally, the temperature measurements found using PZFlex suggest that this method is in fact safe for humans.

*Contact: alinaks@gwmail.gwu.edu