Objective

To investigate the differential electrophysiological roles of β_1 vs β_2 adrenergic (AR) stimulation on regulating pacemaker activity in the isolated right atrium of a large mammalian model.

Introduction

Excessive β-AR stimulation is a hallmark of heart failure (HF) [1]. In the development of end-stage HF, cardiac output is reduced and myocardial function declines. The sympathetic nervous system compensates for these losses by activating β-AR receptors and thus increasing heart rate and cardiac contractility [2]. Specifically, circulating catecholamine levels rise to regulate G-protein-coupled receptor activity and hemodynamic demands. Acutely, β-AR receptor activation can effectively return cardiac conditions back to normal levels; however, chronic sympathetic activity may be deleterious to the heart and actually lead to further pathologic changes and deterioration of both cardiac structure and function [2].

There are two dominant subtypes of β-AR: β_1 and β_2. The signaling and functional properties of these two adrenergic receptors are distinctly different (Fig. 1). β_1-AR mediates chronotropic and inotropic effects of catecholamines via the stimulatory G protein (Gs), whereas β_2-AR can couple to both Gs and the inhibitory G protein (Gi) [2].

Background & Motivation

β-blockers are a mainstream therapy for many of those who suffer from heart failure, but it is not fully understood how β-AR stimulation directly affects pacemaker activity. Recent studies have shown that stimulation of β_1- and β_2-AR has varying electrophysiological responses and arrhythmogenic effects on the heart, specifically in the ventricles (Fig. 2) [1]. Therefore, it was the goal of this study to examine the electrophysiological roles of β_1- vs β_2-AR stimulation on the right atrium of a large animal model to better understand their differential effects in regulating pacemaker activities.

Methods

Figure 3. Schematic representation of dual-sided optical mapping setup. Isolated canine right atrial preparation is placed in a temperature controlled bath at 37°C and perfused with oxygenated Tyrode solution. The tissue is suspended vertically to allow optical access to both endocardial and the epicardial surfaces. Each side of the preparation is excited with a 520-nm LED light source, and emitted fluorescence captured through a 690-nm long-pass filter using two MICAM Ultima-L CMOS cameras facing eachother with the same 5×5 cm field of view. Recordings were captured at 1000 Hz.

Figure 4. Representative views of epicardial (left) and epicardial (right) surfaces of the isolated canine right atrium. SAN indicates sinoatrial node; CT, crista terminals; RA, right atrium; RV, right ventricle; IS, interatrial septum; RCA, right coronary artery (cannulated).

Figure 5. Detailed timeline of the experimental protocol. Specific agonists for β_1-AR and β_2-AR (propranolol at 1μmol/L and sotalol at 1μmol/L, respectively) were perfused into the preparation. Agonists were applied at saturating concentrations according to previous cardiac studies [1] so that the maximum effective activation of the receptors could be achieved.

Figure 6. Representative activation maps of the isolated canine right atrium upon pharmacological stimulation of β_1- and β_2-AR.

Figure 7. Changes in average heart rate and APD80 with sympathetic pharmacological stimulation.

Conclusions

- This data shows, for the first time, a differential electrophysiological role of β_1 and β_2 in right atrial tissue of a large animal model.
- Both β-ARs increase automaticity of pacemaker tissue, but β_2 has a larger impact than β_1 in decreasing APD80.
- Dual-sided optical mapping is beneficial for showing shifts in the leading pacemaker initiation sites in the presence of adrenergic agonists.
- In contrast to effects observed in normal ventricular tissue, β-AR subtypes play opposing roles in regulating action potential duration in the right atrium.
- The results of this study offers new insights into the differential role of β_1 and β_2 in regulating heart rate and the propagation of electrical activity throughout pacemaking tissue.

Acknowledgements

This work was funded by NIH R01 HL115415 04. The authors would like to thank Drs. Xiyuan Li, Matthew Kay, and Kedar Aras for assistance with animal surgeries.

References