Spacecraft Trajectory Design Near Asteroid 4769 Castalia

Shankar Kulumani

Flight Dynamics and Controls Laboratory (Dr. Taeyoung Lee)
Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science

Introduction

- Asteroids and comets are of significant interest
 - Science - Insight into early solar system formation
 - Mining - vast quantities of useful materials
 - Impact - high risk from hazardous Near-Earth asteroids
- Near-Earth asteroids (NEAs) are especially interesting
 - Orbit close to the Earth and are easily accessible
 - Many asteroids hold vast quantities of useful materials
 - Asteroid mining: Precious metals, propulsion fuels, semiconductors
 - Commercialization is feasible with huge amounts of possible profit
- High probability of future asteroid impacts

Technical Challenges

- Low-thrust propulsion systems offer innovative options
 - Electric propulsion offers much greater efficiency
 - Allows for greater velocity change with a reduced mass cost
 - Key component for long duration missions with frequent thrusting
 - Requires new methods of design
- Optimal trajectory design is complicated
 - Highly nonlinear and chaotic dynamics requires intuition by designer
 - Using low-thrust propulsion adds additional difficulties in accurately capturing the small perturbations
- Astrodynamics trajectory design typically uses direct optimal control
 - Large nonlinear programming problem inherently approximates the true optimal solution
 - High dimensionality of the solution makes it extremely computationally intensive

Gravitational Modeling

- Asteroids are extended bodies - not point masses
 - Gravity is the key force in orbital mechanics
 - An accurate representation of gravity is critical to accurate and realistic analysis
- Spherical Harmonic approach is popular but not ideal
 - Model is only valid outside of circumscribing sphere
 - Composed of an infinite series - always results in an approximation
 - Model will diverge when close to the surface and is not ideal for landing missions
- Polyhedron Gravitational model used to represent the asteroid
 - Gravity is a function of the shape model
 - Globally valid and closed-form analytical solution for gravity
 - Exact potential assumes a constant density assumption
 - Accuracy is only dependent on the shape

Dynamics about the asteroid 4769 Castalia

- Dynamics are very similar to the famous three-body problem
 \[\frac{d}{dt} \begin{bmatrix} \dot{r} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} g(r) + h(v) + u \\ 0 \end{bmatrix} \]
- Huge history of analytical tools allow for great insight into the dynamics
- Analytical insight is critical to understanding the free motion around an asteroid
 - We require an accurate understanding of the motion under the influence of gravity alone
 - Efficient use of the limited onboard fuel is dependent on exploiting the natural dynamics of the asteroid environment
- Jacobi Integral - single constant of motion which bounds the feasible regions in terms of “energy”
 \[J(r, v) = \frac{1}{2} r^2 (x^2 + y^2) + U(r) - \frac{1}{2} (x^2 + y^2 + z^2) \]

Simulation Results

- Transfer between two periodic orbits of 4769 Castalia
 - Thruster represents a current electric propulsion \(\approx 400 \, \text{mN} \)
 - Combining multiple iterations of the reachability computation allows for general transfers
 - Combining four iterations of the reachability set
 - Each iteration of the reachability set enlarges the achievable states
 - We choose a direction on the reachability set which lies closest to the target
 - This iterative approach avoids the difficulty in choosing accurate initial guesses for optimization

Reachability on the Poincaré section

- Reachability on the Poincaré section
 - Reachability set on a Poincaré section

Conclusions

- Demonstrate a transfer around an asteroid using multiple reachability sets
 - Each reachability set moves the spacecraft towards the target
 - Alleviates the need for selecting accurate initial guesses
 - Automatically gain insight into the feasible region of motion for the spacecraft
- Future work will extend this principle to landing trajectories on asteroids
 - Irregular shape of asteroids requires innovative techniques for controlling both position and orientation
 - Nonlinear control allows for the exploitation of the coupled dynamics
 - Complex dynamics requires accurate integration schemes - Variational Integrators
- Successful extension of previous work in the circular restricted three-body problem