
  

We extend the idea of flux reconstruction1,2  to solve 
incompressible flows with high order accuracy while 
implementing the following concepts for unstructured linear 
quadrilateral elements Ω

q
:

●  isoparametric mapping of physical element Ω
q
 to reference 

element Ω
r
 = {ξ,η | 0 ≤ ξ,η ≤ 1}

●  curved boundaries represented via cubic Bezier curves

In computational fluid dynamics (CFD), high-
order (3rd  and above) spatially accurate 
methods used to solve large scale problems 
require fast convergence. To address this need, 
the current implementation uses an implicit LU-
SGS time-stepping scheme to accelerate 
convergence rate of unsteady 2D 
incompressible flows on unstructured meshes.

Consider the unsteady incompressible Navier-Stokes equations 
with artificial compressibility (AC)

Implicit Time Stepping
(1) permits a large time step, Δt → quickly establish 

divergence-free velocity field
(2) utilizes advanced time-stepping techniques for 

solving hyperbolic/parabolic PDEs
(3) parallel processing and mesh deformation friendly 

to solve fluid-structure interaction problems
(4) high memory requirement & implementation 

difficulty

Development of a fast algorithm for solving the unsteady 
incompressible Navier-Stokes equations
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Motivation

Referring back to our mass conservation equation, we can define 
the residual for the first equation as

and develop an algorithm to drive this residual as close and fast 
to zero as possible. To solve the governing form with the implicit 
LU-SGS scheme, a linearization of the governing equations must 
be performed.

The system of equations is then solved directly 
using LU decomposition. For higher orders of 
accuracy, the size of matrix A  renders the 
solution of x more computationally expensive.

● Cylinder at Re=100
● Efficiency speedup measured per shedding cycle

1
β

∂ p
∂ τ

+
∂u
∂ x

+
∂v
∂ y

= 0

● NACA-0012 airfoil at α=1◦ , Re=1850
● Speedup in CPU time to achieve steady state = 55

Explicit Implicit

m
max 10 10 10 10 10

k
max - 1 3 6 10

C
L,rms 0.231 0.240 0.230 0.223 0.222

C
D 

(C
D,rms

) 1.354 (0.006) 1.342 (0.006) 1.338 (0.006) 1.338 (0.006) 1.338 (0.006)

Strouhal 0.162 0.160 0.162 0.163 0.163

Speedup 1 25.2 8.5 4.5 2.7

Governing Equations

Implicit Time-Stepping

Steady Flow

Mapping to Reference Element

References

(1) Parallel processing
(2) Three-dimensional implementation
(3) Moving and deforming mesh for fluid-structure interaction

Future Implementation

Residual : Rr = ∇⋅V⃗ r → 0

[ IΔ t +
∂ Rr
∂U r

] δ pr
k+1

= − Rr
*

−
Δ p*

Δ τ

A x = b

N A

2 12x12

3 27x27

4 48x48

5 75x75

● Taylor-Couette Flow at Re=10

Verification Unsteady Flow

Each reference cell contains NxN 
solution points in 2D

● High order accuracy
● Solution points (SP) located at Legendre-Gauss 

positions
● Flux points (FP) located along the element 

boundary
● Solution is piecewise continuous across domain

High-order CFD Method

∇⋅V⃗ →0

∂u
∂ τ

+
∂u
∂ t

+
∂(u2+ p−νu x)

∂ x
+

∂(vu−νu y)

∂ y
= 0

∂ v
∂ τ

+
∂v
∂ t

+
∂(uv−νv x)

∂ x
+

∂(v2+ p−νv y)

∂ y
= 0

Pseudo Time Stepping
➢ implicit
➢ explicit

Physical Time Stepping
➢ 2nd order backward 

differencing

∂U
∂ τ

+
∂ Û
∂ t

+
∂ f
∂ x

+
∂ g
∂ y

= 0

Pros

Cons

Non-linear lower-upper symmetric Gauss-Seidel backward Euler 
(LU-SGS)
Third-order three-stage Runge-Kutta (RK33)

[ xy ]=∑
i=1

4

Ψi(ξ ,η) [ xiyi ]

l i(ξ)= ∏
s=1, s≠i

N

( ξ−ξs
ξi−ξs )

U (ξ)=∑
i=1

N

U i l i (ξ) f r
D (ξ)=∑

i=1

N

f r |i
D l i(ξ)

f r (ξ)= f r
D (ξ)+[ f r−1/2

com − f r
D(0)]g r

LB(ξ)+[ f r+1 /2
com − f r

D(1)]g r
RB(ξ)

Ωr

pr
n+1,m+1− pr

n+1,m

Δ τ
+ ∇⋅V⃗ r

n+1,m+1
= 0

Rr
m+1

− Rr
m

≈
∂Rr
∂U r

+ ∑
nb≠r

∂ Rr
∂U nb

ΔU nb

High-order Method
➢flux reconstruction
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