

Motivation

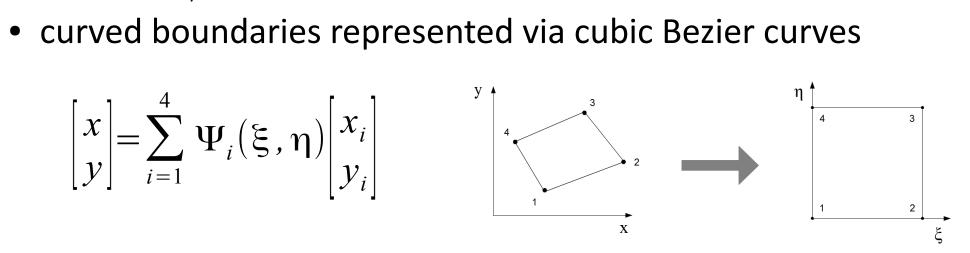
In computational fluid dynamics (CFD), highorder (3rd and above) spatially accurate methods used to solve large scale problems require fast convergence. To address this need, the current implementation uses an implicit LU-SGS time-stepping scheme to accelerate unsteady 2D rate convergence of incompressible flows on unstructured meshes.

Governing Equations

Consider the unsteady incompressible Navier-Stokes equations with artificial compressibility (AC) $\nabla \cdot \vec{V} \rightarrow 0$ $\frac{1}{\beta} \frac{\partial p}{\partial \tau} + \frac{\partial u}{\partial r} + \frac{\partial v}{\partial r} = 0$ $\frac{\partial u}{\partial \tau} + \frac{\partial u}{\partial t} + \frac{\partial (u^2 + p - v u_x)}{\partial r} + \frac{\partial (v - v u_y)}{\partial r} = 0$ $\frac{\partial v}{\partial \tau} + \frac{\partial v}{\partial t} + \frac{\partial (uv - vv_x)}{\partial x} + \frac{\partial (v^2 + p - vv_y)}{\partial v} = 0$ <u>High-order Method</u> Pseudo Time Stepping -Flux reconstruction > implicit − − ≻ explicit $-\left(\frac{\partial \hat{U}}{\partial t}\right) + \left|\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}\right| = 0$ Physical Time Stepping 2nd order backward differencing Non-linear lower-upper symmetric Gauss-Seidel backward Euler (LU-SGS) Third-order three-stage Runge-Kutta (RK33) Implicit Time Stepping (1) permits a large time step, $\Delta t \rightarrow$ quickly establish divergence-free velocity field (2) utilizes advanced time-stepping techniques for Pros 🛑 solving hyperbolic/parabolic PDEs (3) parallel processing and mesh deformation friendly to solve fluid-structure interaction problems **Cons** (4) high memory requirement & implementation difficulty Mapping to Reference Element

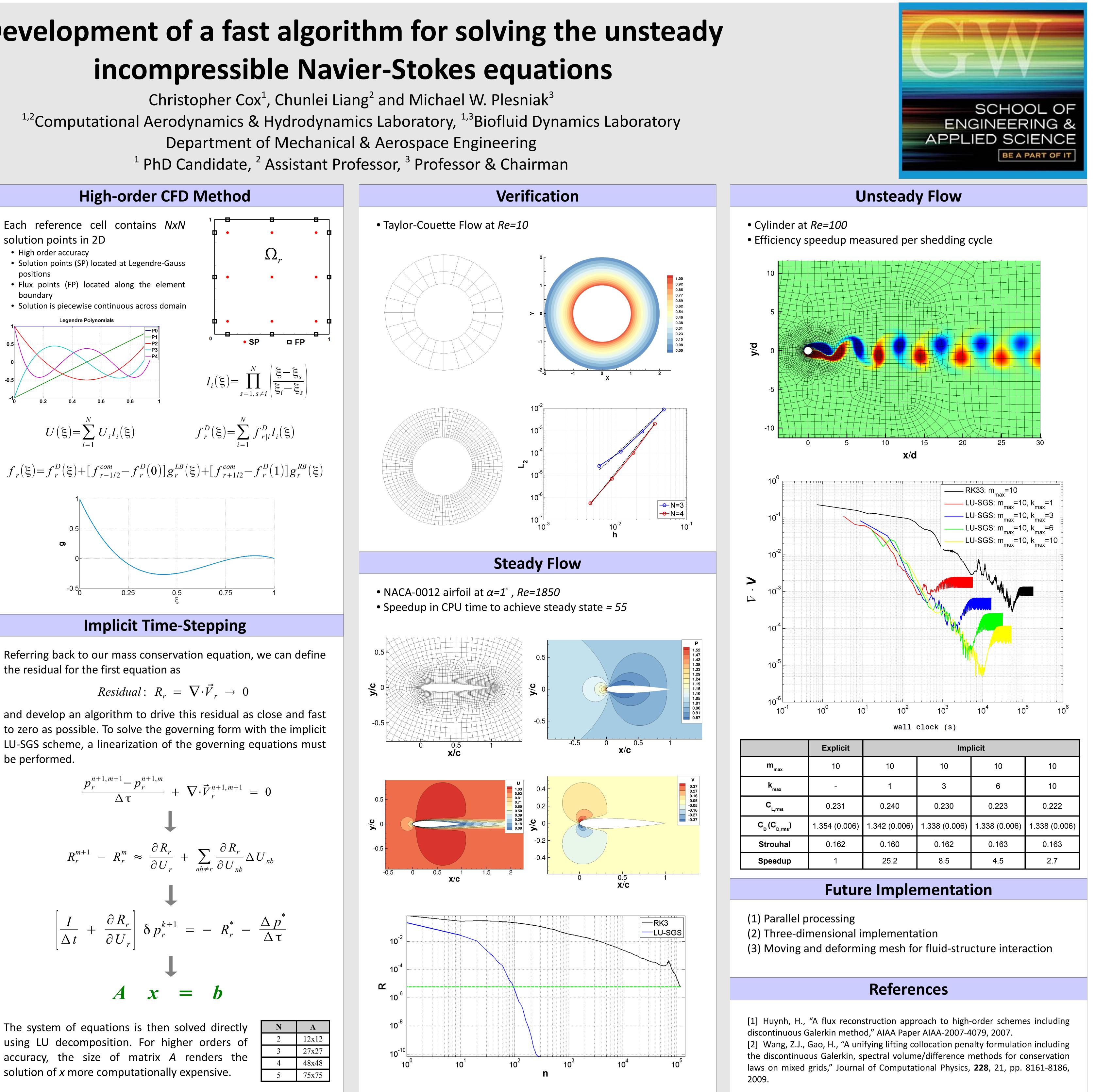
We extend the idea of flux reconstruction^{1,2} to solve incompressible flows with high order accuracy while implementing the following concepts for unstructured linear quadrilateral elements Ω :

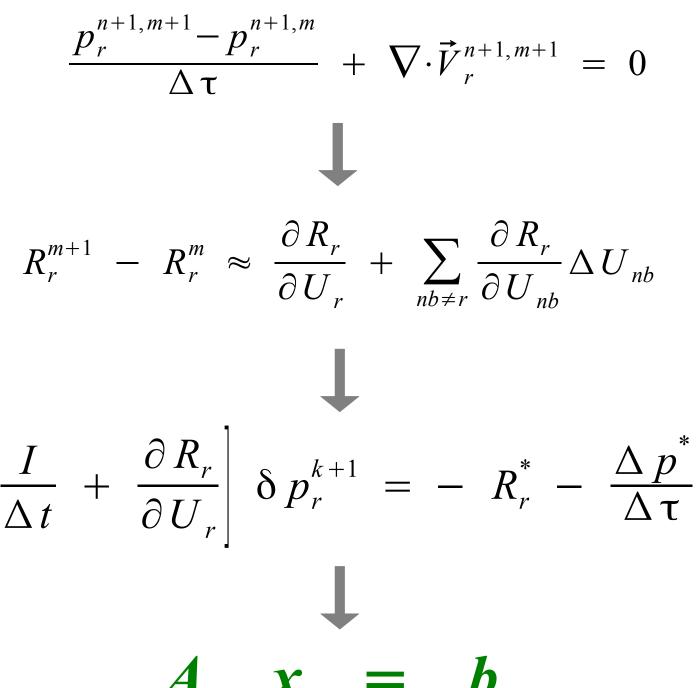
- isoparametric mapping of physical element Ω_{2} to reference element $\Omega_{\mu} = \{\xi, \eta \mid 0 \le \xi, \eta \le 1\}$



Development of a fast algorithm for solving the unsteady incompressible Navier-Stokes equations

Christopher Cox¹, Chunlei Liang² and Michael W. Plesniak³ Department of Mechanical & Aerospace Engineering ¹ PhD Candidate, ² Assistant Professor, ³ Professor & Chairman





Ν	Α		
2	12x12		
3	27x27		
4	48x48		
5	75x75		

	Explicit	Implicit				
n _{max}	10	10	10	10	10	
(max	-	1	3	6	10	
L,rms	0.231	0.240	0.230	0.223	0.222	
C _{D,rms})	1.354 (0.006)	1.342 (0.006)	1.338 (0.006)	1.338 (0.006)	1.338 (0.006)	
ouhal	0.162	0.160	0.162	0.163	0.163	
edup	1	25.2	8.5	4.5	2.7	