
Stage 1
Performance Analysis[1]

Motivation
To analyze and compare different kinds of

PGAS access performances in Chapel.

Results

Stage 3
Runtime System Support*

Motivation

What if programming language
supported user-driven prefetching?

Design

Productive
Extensible
Scalable
Efficient
Consistent

Results

Promising performance improvements
with very little modification on

application code

● Similar performance to manual
prefetching

● Almost all experiments required
adding few calls to prefetch
functions

Ongoing Work
● Fixing some known implementation

issues that are causing low
performance in some cases

● Extending support to prefetching
sparse data(matrices and graphs)

Stage 2
Hand Optimizations[2]

Motivation
What are some common practices for

Chapel programmers to achieve better
multi-node performance?

Optimizations

Results

Sobel MM

Heat diffusion STREAM Triad

Sobel MM

LULESH PTRANS

References
[1]E. Kayraklioglu and T. El-Ghazawi, “Assessing Memory Access Performance of
Chapel through Synthetic Benchmarks,” in 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2015, pp. 1147–1150.
[2]E. Kayraklioglu, O. Serres, A. Anbar, H. Elezabi, and T. El-Ghazawi, “PGAS Access
Overhead Characterization in Chapel,” in 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2016, pp. 1568–1577
[3]chapel.cray.com

* This work is a collaboration with Chapel team at Cray:
http://chapel.cray.com/collaborations.html

Mitigating Communication Costs in Emerging Parallel Programming Languages
Engin Kayraklioglu

Advisor: Tarek El-Ghazawi

engin@gwu.edu

Parallel Programming Models What is Chapel?

Shared Memory

No sense of data locality ⟶ Very easy to use

OS can map any virtual address to any physical
address ⟶ Very inefficient

Shared Memory

No sense of data locality ⟶ Very easy to use

OS can map any virtual address to any physical
address ⟶ Very inefficient

Partitioned Global Address Space (PGAS)

Flat memory ⟶ Easy to use
Language is locality-aware ⟶ Automatic

optimizations
Programmer can exploit locality ⟶ Manual

optimizations

Partitioned Global Address Space (PGAS)

Flat memory ⟶ Easy to use
Language is locality-aware ⟶ Automatic

optimizations
Programmer can exploit locality ⟶ Manual

optimizations

Message Passing

Data locality is enforced ⟶ Difficult to use

Programmer controls data traffic ⟶ High
performance

Message Passing

Data locality is enforced ⟶ Difficult to use

Programmer controls data traffic ⟶ High
performance

const imgSpace = {0..#2048, 0..#2048};
const imgDom = imgSpace

dmapped Block(imgSpace); // block distributed domain
var inImg: [imgDom] uint(8); // block distributed array
var outImg: [imgDom] uint(8); // block distributed array

// ... initialize img here ...

forall (i, j) in imgDom do // distributed forall loop
 outImg = sobelKernel(inImg, i, j); // run sobel kernel

--
const matSpace = {0..#2048, 0..#2048};
const matDom = matSpace

dmapped Block(matDom); // block distributed domain
const A: [matDom] real; // block distributed array
const B: [matDom] real; // block distributed array
const C: [matDom] real; // block distributed array

// .. initialize matrices here ...

forall (i,j) in C.domain do // distributed forall loop
 for k in A.domain.dim(2) do // local-sequential for loop
 C[i,j] += A[i,k] * B[k,j];

const imgSpace = {0..#2048, 0..#2048};
const imgDom = imgSpace

dmapped Block(imgSpace); // block distributed domain
var inImg: [imgDom] uint(8); // block distributed array
var outImg: [imgDom] uint(8); // block distributed array

// ... initialize img here ...

forall (i, j) in imgDom do // distributed forall loop
 outImg = sobelKernel(inImg, i, j); // run sobel kernel

--
const matSpace = {0..#2048, 0..#2048};
const matDom = matSpace

dmapped Block(matDom); // block distributed domain
const A: [matDom] real; // block distributed array
const B: [matDom] real; // block distributed array
const C: [matDom] real; // block distributed array

// .. initialize matrices here ...

forall (i,j) in C.domain do // distributed forall loop
 for k in A.domain.dim(2) do // local-sequential for loop
 C[i,j] += A[i,k] * B[k,j];

Chapel is an emerging, productive, parallel
programming language with the PGAS memory
model[3]. Unlike other PGAS languages and
libraries, Chapel is standalone and is designed from
scratch for parallel programming.
Being a PGAS language, Chapel carries some
inherent overheads of the easy-to-use memory
model.

Chapel is an emerging, productive, parallel
programming language with the PGAS memory
model[3]. Unlike other PGAS languages and
libraries, Chapel is standalone and is designed from
scratch for parallel programming.
Being a PGAS language, Chapel carries some
inherent overheads of the easy-to-use memory
model.

Data-parallel loops

// parallel distributed loop-
forall a in arr do

something(a);

Data-parallel loops

// parallel distributed loop-
forall a in arr do

something(a);

Task-parallel loops

// task parallel loop
coforall t in numTasks do

something()

Task-parallel loops

// task parallel loop
coforall t in numTasks do

something()

Tasks & Synchronization
var done$: sync bool;
begin {

something();
done$ = true;

}
// implicit wat
if done then

somethingElse();

Tasks & Synchronization
var done$: sync bool;
begin {

something();
done$ = true;

}
// implicit wat
if done then

somethingElse();

Locality control
// move execution to where
// arr[15] is
on arr[15] do

local do something(arr[15]);

Locality control
// move execution to where
// arr[15] is
on arr[15] do

local do something(arr[15]);

Distribution objects

var dom = {0..10} dmapped Block();
var arr: [dom] int; //Block distributed array-

Distribution objects

var dom = {0..10} dmapped Block();
var arr: [dom] int; //Block distributed array-

O0 No hand optimizations

O1
Reorganize loops to be able to
use local block

O2 Manually localize remote data

Version Speedup Lines of Code

O0 1x 1x

O1 1.1x-6.1x 4x-26x

O2 1.7x-68.1x 2.5x-11x

Access to a Local Array

Access to a Local Part of Shared Array

Optimized Access to a Local Part of Shared Array

Access to a Remote Part of Shared Array

Access Type Normalized Latency

Local 1x

Local Shared 35x

Local Shared
Opt

1x

Remote 700x

Sobel Access Pattern MM Access Pattern

Synthetic Memory Access Benchmark

	Slide 1

