
Stage 1
Performance Analysis[1]

Motivation
To analyze and compare different kinds of 

PGAS access performances in Chapel.

Results

Stage 3
Runtime System Support*

Motivation

What if programming language 
supported user-driven prefetching?

Design

Productive
Extensible
Scalable
Efficient
Consistent

Results

Promising performance improvements 
with very little modification on 

application code

● Similar performance to manual 
prefetching

● Almost all experiments required 
adding few calls to prefetch 
functions

Ongoing Work
● Fixing some known implementation 

issues that are causing low 
performance in some cases

● Extending support to prefetching 
sparse data(matrices and graphs)

Stage 2
Hand Optimizations[2]

Motivation
What are some common practices for 

Chapel programmers to achieve better 
multi-node performance?

Optimizations

Results

Sobel MM

Heat diffusion STREAM Triad

Sobel MM

LULESH PTRANS
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Parallel Programming Models What is Chapel?

Shared Memory

No sense of data locality ⟶ Very easy to use

OS can map any virtual address to any physical 
address ⟶ Very inefficient
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Partitioned Global Address Space (PGAS)

Flat memory ⟶ Easy to use
Language is locality-aware ⟶ Automatic 

optimizations
Programmer can exploit locality ⟶ Manual 

optimizations
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Message Passing

Data locality is enforced ⟶ Difficult to use

Programmer controls data traffic ⟶ High 
performance

Message Passing

Data locality is enforced ⟶ Difficult to use

Programmer controls data traffic ⟶ High 
performance

const imgSpace = {0..#2048, 0..#2048};
const imgDom = imgSpace 

dmapped Block(imgSpace); // block distributed domain
var inImg: [imgDom] uint(8); // block distributed array
var outImg: [imgDom] uint(8); // block distributed array

// ... initialize img here ...

forall (i, j) in imgDom do // distributed forall loop
  outImg = sobelKernel(inImg, i, j); // run sobel kernel

----------------------------------------------------------------------
const matSpace = {0..#2048, 0..#2048};
const matDom = matSpace 

dmapped Block(matDom); // block distributed domain
const A: [matDom] real;  // block distributed array
const B: [matDom] real;  // block distributed array
const C: [matDom] real;  // block distributed array

// .. initialize matrices here ...

forall (i,j) in C.domain do  // distributed forall loop
  for k in A.domain.dim(2) do // local-sequential for loop
    C[i,j] += A[i,k] * B[k,j];
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Chapel is an emerging, productive, parallel 
programming language with the PGAS memory 
model[3]. Unlike other PGAS languages and 
libraries, Chapel is standalone and is designed from 
scratch for parallel programming.
Being a PGAS language, Chapel carries some 
inherent overheads of the easy-to-use memory 
model.
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Data-parallel loops

// parallel distributed loop-
forall a in arr do

something(a);
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Task-parallel loops

// task parallel loop
coforall t in numTasks do

something()
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// task parallel loop
coforall t in numTasks do

something()

Tasks & Synchronization
var done$: sync bool;
begin {

something();
done$ = true;

}
// implicit wat
if done then

somethingElse();
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Locality control
// move execution to where 
// arr[15] is
on arr[15] do 

local do something(arr[15]);
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Distribution objects

var dom = {0..10} dmapped Block();
var arr: [dom] int;  //Block distributed array-

Distribution objects
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O0 No hand optimizations

O1
Reorganize loops to be able to 
use local block

O2 Manually localize remote data

Version Speedup Lines of Code

O0 1x 1x

O1 1.1x-6.1x 4x-26x

O2 1.7x-68.1x 2.5x-11x

Access to a Local Array

Access to a Local Part of Shared Array

Optimized Access to a Local Part of Shared Array

Access to a Remote Part of Shared Array

Access Type Normalized Latency

Local 1x

Local Shared 35x

Local Shared 
Opt

1x

Remote 700x

Sobel Access Pattern MM Access Pattern

Synthetic Memory Access Benchmark
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