

WASHINGTON, DC

Background and Motivation

- Mapping: generate a map representing the environment surrounding a robot
- Autonomous Exploration: traverse initially uncertain space based on mapping knowledge
- Motivation for Mapping and Exploration
- Search and Rescue: find targets with physical/health hazards
- Surveillance: gather information of enemy locations
- Convenience: autonomous robotic cleaning

Occupancy Grid Map

Mining Autonomous Exploration

Exact Occupancy Grid Mapping

- ► The probabilistic map is composed of evenly-space grid cells that are either occupied or free
- Given the sensor forward sensor model: P(z|m, x)
- Goal: obtain the inverse sensor model: P(m|z,x)
- Map outcomes can be grouped together:

The forward sensor model (top) refers to the four mapping cases below.

- For *n* grid cells, algorithm is $\frac{n}{n+1} \times 2^n$ times faster
- Exact and approximate inverse sensor models in 2D:

P(m)Approx.

Approx. H

Exact H

Autonomous Exploration

- Autonomous exploration policy is governed by map uncertainty, measured by entropy H
- ► The robot chooses actions to minimize entropy, or equivalently maximize map information gain
- The optimal location and attitude are chosen optimally with map information maximization

Autonomous Exploration Result: Benchmark Simulation Example

0 min

15 min

30 min

Robotic Autonomous Exploration via Exact Occupancy Grid Mapping Evan Kaufman

Flight Dynamics and Control Laboratory (Dr. Taeyoung Lee) Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science

Experimental Result: Ground Robot Exploration