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The objective of this research is to develop, train, and

implement a deep reinforcement learning based

collaborative robotic system capable of learning to

perform manufacturing tasks in collaboration with people

Despite recent advances in robotics,

fewer than ten percent of production tasks

are automated [1]. The complexity of most

manufacturing tasks has made them

unfeasible for traditional automation,

resulting in the need for skilled human

labor. In many situations, however, a blend

of human and autonomous capabilities may

prove to be safest, most efficient, and most

reliable solution.

This research was inspired by DeepMind’s research in 

applying Deep Q Learning to learning Atari 2600[4]. We modify 

their learning algorithm to utilize memory replay as batch training, 

enabling improved convergence to a proper decision policy (Eq. 1). 

Computer vision software was developed in the MATLAB

Image Processing Toolbox to extract important features from video

frames taken from the workspace. In applications such as

collaborative robotics, in which images need to be processes at a

high enough frame rate to detect changes in people’s movement

rapidly enough for the system to react in a timely manner.

Therefore, image processing was done in two phases. The initial

frame was analyzed according to the process depicted in Figure 3.

Figure 3. Initial Image Processing Algorithm

For each subsequent frame, background subtraction was

performed once on the HSV converted image, followed by

connected pixel calculations, resulting in the location and size of

each object. This technique allowed for real time image processing

at a rate of 20 frames per second. This high frame rate is critical to

ensuring the system’s ability to quickly react to changes in the

person’s behavior.

The fundamental concept behind the push for collaborative

robots in manufacturing is the ability to maximize overall

efficiency through division of labor by skillset. Robots excel at

performing tasks that are highly repeatable, require high levels of

precision, or put people at risk. Humans, on the other hand,

perform best at tasks which require the ability to perform analytical

problem solving or adapt to new situations. The ideal

manufacturing environment is one in which these capabilities are

utilized together to optimize overall efficiency and reliability while

maintaining safety.

Developing mathematical models for human-robot

interaction would be an impractical, costly, and non-scalable

endeavor. Instead, we propose a solution in which models and

Figure 2. Deep Q Network Structure

Figure 4. Network’s Final Error DistributionFigure 3. Mean Squared Error per Epoch 

Human Behavior Prediction

In order to train the Deep Q Network to learn to perform 

new tasks in collaboration with a person, simulations were built in 

which the network acted through an agent  to simulate the 

movements of the end effector of a robotic arm. The primary task 

the robot was trained to perform was a basic assembly task, in 

which six parts were added to a larger component.

The Deep Q Network was trained on this simulation, in 

which 100 unique workspaces were generated with pseudo-random 

initial conditions. The feed forward artificial neural network (Fig. 

2) was trained according to the our modified Deep Q Learning 

algorithm (Eq.2) using Levenberg-Marqeardt backpropogation (Eq. 

2), which finds the parameter β of the function f(x,β) that 

minimizes the mean squared error.

β = argmin
β

σ𝑖=1
𝑚 [𝑦𝑖−𝑓 𝑥𝑖 , β ]2 (2)

Where m is the set of empirical datum pairs xi and yi

An important facet of collaborative robotics that has yet to be 

addressed is the ability learn people’s behaviors when performing a 

specific task. Training a neural network to predict human behaviors 

can be used assist reinforcement learning algorithms in learning 

more robust decision policies that result in safer actions. 

A pattern recognition feed forward neural network was build 

in the MATLAB Machine Learning Toolbox. This network’s output 

is constrained by a Softmax layer (Eq. 1), which learns a probability 

distribution. 

σ(z)𝑗 =
𝑒
𝑧𝑗

σ𝑘=1
𝐾 𝑒𝑧𝑘

𝑗 = 1,… , 𝑘 (1)

1. Initialize action  value function Q with random weights and biases

2. Observe initial state S

Repeat:

Initialize Replay Memory M

Repeat:

1. Selection action A, with probability

ε that A is random

1-ε that A = argmax
𝐴

[𝑄, 𝑆′, 𝐴′ ]

2. Carry out action A, observe  new state S’ and reward R

3. Store experience (S,A,S’,R) in M

4. Update Q Network  with (S,A,S’,R) by minimizing the loss function

𝐿 = 𝑅 + ϒmax
𝐴

𝑄 𝑆’, 𝐴’ – 𝑄 𝑆, 𝐴

2

5. 𝑆 ← 𝑆’
Until Simulation Termination

Update Q Network on M using Lavenberg-Marqeardt backpropagation

Until Convergence

This algorithm was applied to train Deep Q Networks in 

simulations of manufacturing-related tasks. 

Analysis & Discussion

The network was trained to learn to predict a person’s  based 

on the first ¼ of the person’s trajectory and the location of the two 

random locations the person could select to go to. In these 

conditions, the network was able to predict the person’s goal 

location correctly 97.0% of the time.  

To demonstrate the scalability of this approach, we then 

trained the network on data in which the person had eight possible 

locations to choose from, resulting in the network making accurate 

prediction 90.3% of the time.

The computer vision software and trained  Deep Q 

Network were then integrated with uArm Metal (Fig. 8), a 

desktop robotic arm modeled after a manufacturing robot. The 

system was then tested on  its ability to perform the assembly task 

it had been trained to learn. 

The network was then tested on fifty newly generated simulations 

with pseudo-random initial conditions. The network guided the 

simulated robot to increase the efficiency of the process by 28% 

over the person working along, while directing it to take safe 

actions 87.9% of the time.

One of the benefits of Deep Q Networks is that they learn 

optimal decision policies on their own, allowing for the possibility 

to solve problems in ways that people have not thought of. This 

became evident in some of the initial training runs, in which the 

network learned an optimal decision policy in conflict with our 

preconceived notion of how the task was to be completed. When 

planning this task, we envisioned that one part at a time would be 

brought to the central component for assembly. However, the robot 

learned to avoid collisions and maximize its efficiency by 

assembling multiple parts away from the main component, and 

then attach the assembled parts to the main component. 

This research successfully demonstrated the feasibility of 

utilizing deep machine learning to direct a collaborative robot to 

work safely and effectively with people. This framework was 

successfully implemented to learn an assembly task, resulting in 

improved overall efficiency while maintaining a high standard of 

safety.

The networks’ performance in a number of ways. Because Q 

Learning assumed a Markov Decision Process, a feed forward 

neural network is insufficient to fully define dynamic states, such 

as those that involve the motion of people and robots. This can be 

resolved by adding recurrence to the network, enabling the 

network to ‘remember’ previous information [5].

The system’s performance 

on the robotic arm was 

comparable to that which was 

observed in simulation. The 

network guided the robotic arm to 

increase the overall efficiency of 

the process by xx%, while 

directing it to take safe actions 

xx% of the time. 

Figure 3. Initial Image Processing Algorithm
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Interest in this middle ground has spawned the field 

of collaborative robotics, which seeks to enable people and robots 

to work together in a shared workspace. Collaborative robotics 

combines the repeatability and strength of robots with the 

creativity, dexterity, and problem-solving skills of people to 

accomplish complex tasks more efficiently [2]. While the 

established capabilities of collaborative robots allow people and 

robots to work in the same space, they do not enable collaboration 

in a manner comparable to that which occurs between 

people. Anti-collision and other safety features are important 

aspects of collaborative robotics, but simply avoiding accidents 

hardly qualifies as collaboration. Enabling true collaboration 

between people and robots requires significant expansion of the 

current capabilities of these robots [3].

This research seeks to advance the current capabilities of 

collaborative robots by establishing a machine learning framework 

to teach deep neural networks to learn to guide a robot to perform 

manufacturing tasks in collaboration with people. This approach 

will enable collaborative robots to become predictive rather than 

reactive, improving safety and increasing efficiency. 

Figure 1. 

Collaborative Robotic Workspace 

Results from these test will be included in the final presentation.

Figure 8. Adaptive Control System Architecture

Figure 2. Artificial Neural Network

policies are learned by neural 

networks, a parallel computing 

structure modeled after the human 

brain, in which a system of 

interconnected neurons are trained to 

learn a complex function from data.

Building on the results of this work, we propose a fully 

integrated system of neural networks to distribute the process of 

learning complex tasks across multiple networks. It will be capable 

of learning to identify and classify important objects in a 

manufacturing workspace, learning manufacturing processes and 

the specific tasks associated with those processes, learning human 

behaviors associated with those processes, and planning safe 

trajectories in order to safely and efficiently collaborate with 

people. This system will incorporate real time user feedback and a 

database of trained networks and learned behaviors to learn more 

robust policies and ensure the system’s performance.

Figure 9. Proposed Deep Learning System Structure
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