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Introduction

I Motivation: To enable third-party analytical applications of Online Social
Networks (OSNs), one must be able to accurately estimate big-picture
aggregates (e.g., the AVERAGE age of users, the COUNT of user posts that
contain a given word) by issuing a small number of individual-user queries
through the social network’s web interface.

(a) OSNs examples (b) The graph topology of OSNs (c) Random walk sampling

Figure : Random walk based sampling on OSNs

I Problem Definition: How to sample nodes from large graphs using random
walks via graph browsing interface with limited query cost while obtain as
accurate estimation as possible?

I Our ideas: History-Aware Random Walks. The focus of this paper is
to offer a “drop-in” replacement for this core design (of random walk), such
that existing sampling-based analytics techniques over online social networks,
no matter which analytics tasks they support or graph topologies they target,
can have a better efficiency by leverage random walks’ history.

Preliminaries

I Graph Browsing Interface. The only access channels we have over the
data is the web and/or API interface provided by OSNs. While the design of
such interfaces varies across different real-world online social networks, almost
all of them support queries that take any user ID u as input and return two
types of information about u:
IN(u), the set of all neighbors of u, and
I all other attributes of u (e.g., user self-description, profile, posts).

I Random Walk. [Simple Random Walk (SRW)]. Given graph
G(V,E), and a node v ∈ V , a random walk is called Simple Random Walk
if it chooses uniformly at random a neighboring node u ∈ N(v) and transit
to u in the next step.

Pvu =

{
1/kv if u ∈ N(v),
0 otherwise.

That is, SRW selects each node in the graph with probability proportional to
its degree.

I History-Aware Random Walks (Higher order Markov Chain).

Pr(Xn = xn | Xn−1 = xn−1, . . . , X1 = x1)

=Pr(Xn = xn | Xn−1 = xn−1, . . . , Xn−m = xn−m)
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(b) History-aware random walks will pick different

routes whenever possible to avoid stuck in the same

region of the graph.

Figure : A demo shows a History-aware random walks on-the-fly.

CNRW: Circulated Neighbors Random Walk

I Key idea. The key idea of CNRW is to replace such a memoryless transition
of SRW to a stateful process. Specifically, given the previous transition of the
random walk u→ v, instead of selecting the next node to visit by sampling
with replacement from N(v), i.e., the neighbors of v, we perform such
sampling by circulating all v’s neighbors without replacement.

I Theorems
I Theorem 1. CNRW has the same stationary distribution π(v) = kv/2|E| as SRW’s.
I Theorem 2. The asymptotic variance of CNRW is no greater than SRW’s.

V∞(µ̂′) ≤ V∞(µ̂).
I Theorem 3. For a barbell graph, the transition probability

PCNRW

PSRW
>
|G1|
|G1| − 1

ln |G1|.
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Figure : Demo of CNRW, it chooses the next candidate from the set N(v) in a round-robin
manner, e.g. circulating the nodes {w, q, u}.
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Figure : Comparisons of the block distribution in CNRW and SRW. CNRW creates alternating
stratified path blocks that boost the sampling performance.

GNRW: Groupby Neighbors Random Walk

I Key idea. GNRW is a natural extension of CNRW. Instead of performing
the circulation at the granularity of each neighbor (of v), we propose to first
stratify the neighbors of v into groups, and then circulate the selection
among all groups.

I Theorems
I Theorem 1. GNRW has the same stationary distribution π(v) = kv/2|E| as SRW’s.
I Theorem 2. The asymptotic variance of GNRW is no greater than SRW’s.

V∞(µ̂∗) ≤ V∞(µ̂).
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Figure : An example of partitioning a node’s neighbors into 3 groups. GNRW chooses a next
group by circulating {S1, S2, S3}.

A -> B A -> A B -> A B -> B

A -> B A -> A B -> B A -> A B -> B A -> B A -> A B -> B A -> A B -> A B -> A B -> B A -> A

BA

AB

AA

BA

BBO

A -> B A -> A B -> B A -> A B -> B A -> B A -> A B -> B A -> A B -> A B -> A B -> B A -> A

BA

AB

AA

BA

BB

O

BA

AB

AA

BA

BBO

BA

AB

AA

BA

BB

A -> B B -> B B -> B B -> B B -> B B -> A A -> A A -> A A -> A A -> B B -> A A -> A A -> Au

v

S2

S1

S3

u

v

S2

S1

S3

u

v

w

B(w)
q

B(q)

B(w) B(u) B(q) B(w) B(u) B(q) B(w)B(u) B(q)

B(w) B(u) B(w) B(q)B(u) B(w) B(q) B(q) B(u)

CNRW

SRW

Segments of alternating path blocks. They are circulated with a period of 3.

Path blocks can be consecutive in SRW.

v

u q

w
B(w)

B(q)

B(u)

u

v

S1

S2 S3

B(w1) B(w3) B(w2) B(w4)

Segments of alternating groups and path blocks. They are circulated with a period of 4.

v
w1

2w

4w

3w
S1

S2

S1

S2 S1 S2 S1 S2 S1 S2

B(w2) B(w3) B(w1) B(w4)

S1 S2 S1 S2

B(w2) B(w4) B(w1) B(w3)

Figure : A demo of GNRW: it makes higher order of stratifications of the path blocks by
grouping them into strata.

Experimental Results
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(a) KL-divergence
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(b) `2-distance
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(c) Estimation error

Figure : Public benchmark dataset: Facebook
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(a) KL-divergence
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(c) Estimation error

Figure : Synthetic datasets: clustered graph
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Figure : Barbell graph size analytics.
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(b) Yelp (average degree)
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(c) Yelp (average reviews count)

Figure : Performance comparisons on large OSNs.

Conclusion

In this paper, we developed two algorithms: (1) CNRW, which replaces the
memoryless transition in simple random walk with a memory-based,
sampling-without-replacement, transition design, and (2) GNRW, which further
considers the observed attribute values of neighboring nodes in the transition
design. We proved that while CNRW and GNRW achieve the exact same target
(sampling) distribution as traditional simple random walks, they offer provably
better (or equal) efficiency no matter what the underlying graph topology is.
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