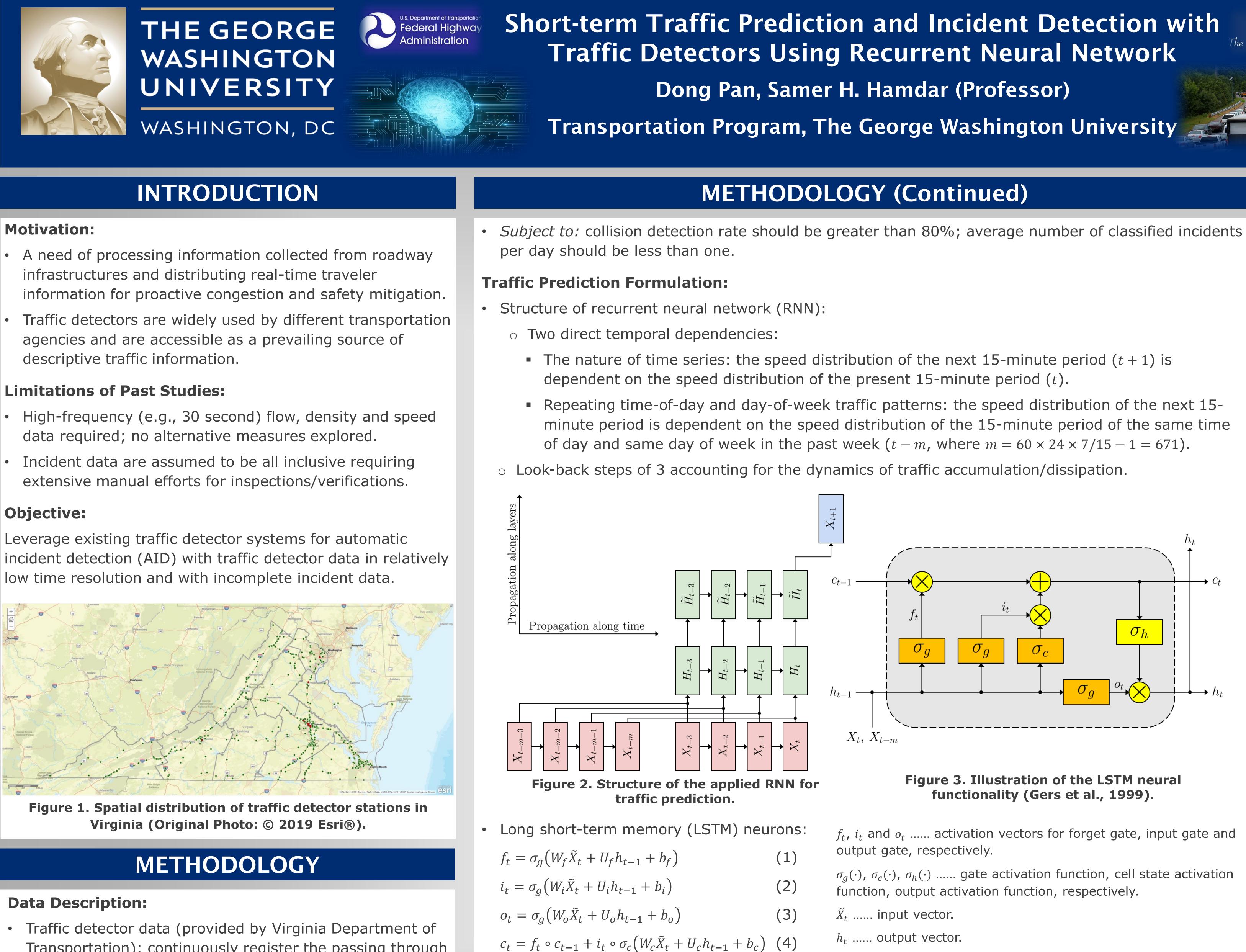


- infrastructures and distributing real-time traveler
- agencies and are accessible as a prevailing source of descriptive traffic information.

- data required; no alternative measures explored.
- Incident data are assumed to be all inclusive requiring extensive manual efforts for inspections/verifications.



- Transportation): continuously register the passing through vehicles and place them into different speed intervals. Data are archived every 5 or 15 minutes.
- Collision data (provided by Virginia Department of Motor Vehicles): time and location of each reported collision.

Definition and Assumption:

- Incidents refer to all types of traffic disruptive events leading to nonrecurrent changes in their surrounding traffic flow characteristics.
- Incident detection accuracy (in terms of both detection rate and false alarm rate) is positively related to the collision detection accuracy.

Balancing Problem:

• *Objective*: maximize the fraction of detected collisions to classified incidents.

Incident Detection Formulation:

Measure of normality:

 $h_t = o_t \circ \sigma_h(c_t)$

• RMSE is adopted to evaluate the deviation from the predicted speed distribution to the observed speed distribution.

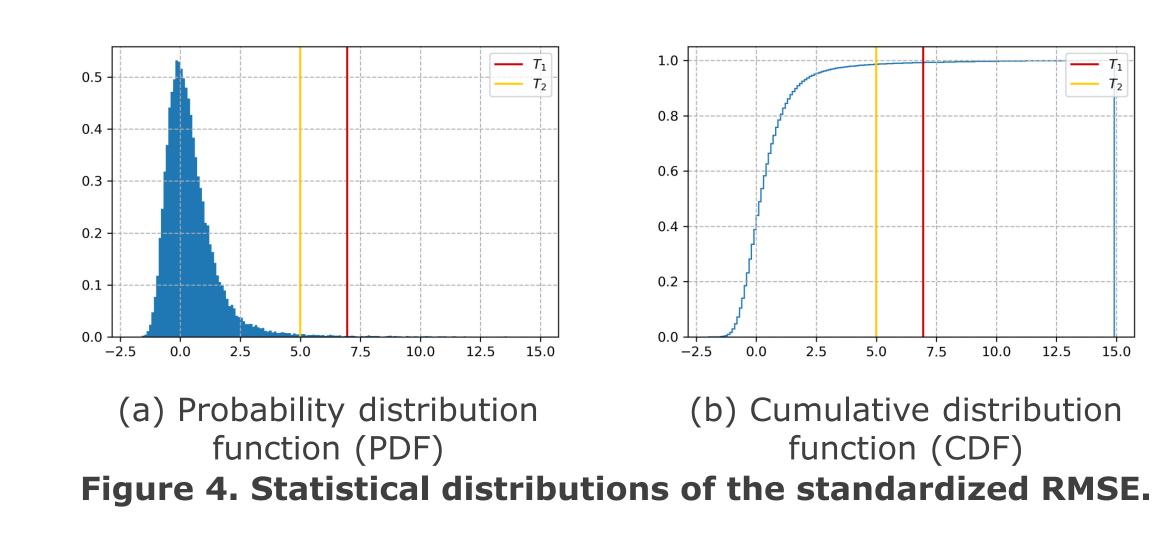
(5)

- RMSE is further standardized by its time-of-day and weekday/weekend specific median and interquartile range (IQR).
- Outlier (incident) identification:
 - Incidents can be seen as the extreme cases in terms of the deviations from the original predictions to the actual observations, thus the derived standardized RMSEs.
 - Percentile values of standardized RMSEs adopted as incident-warning thresholds after calibration.
 - \circ Two thresholds, T_1 (one-step check) and T_2 (two-consecutive-step check), are established for a timelier detection with less false alarms.

W's, U's and b's the learned weight matrices and bias vectors.

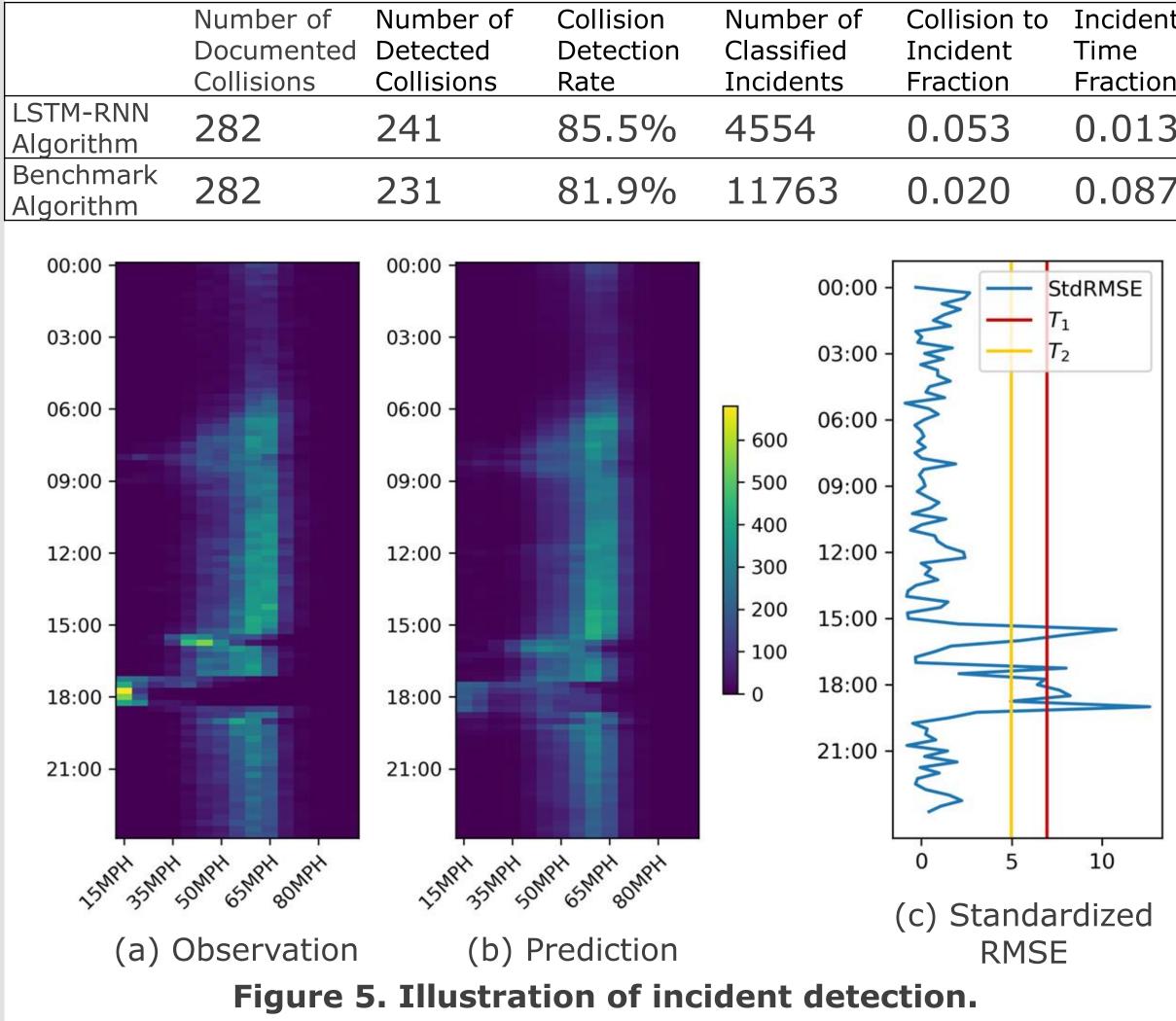
Battelle

The Business of Int



Detection Results:

Table 1. Comparison of Detection Results Between the proposed LSTM-RNN Algorithm and a Benchmark Algorithm



Detection Results:

Limitation and Future Research Direction:

Reference: Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to forget: Continual prediction with LSTM. In 9th International Conference on Artificial Neural Network, Edinburgh, United Kingdom, 850-855.

TRANSPORTATION PROGRAM

DEPARTMENT OF CIVIL & ENVIRONMENT ENGINEERING

SCHOOL OF ENGINEERING & APPLIED SCIENCE

RESULTS

Statistics of Standardized RMSEs:

nber of	Number of	Collision	Number of	Collision to	Incident
cumented	Detected	Detection	Classified	Incident	Time
isions	Collisions	Rate	Incidents	Fraction	Fraction
2	241	85.5%	4554	0.053	0.013
2	231	81.9%	11763	0.020	0.087

CONCLUSIONS

• Over 85% of the collisions can be detected.

• Detected collisions consist 5.3% of the classified incidents.

• Incident time occupies 1.3% of the total testing period.

• Only one incident type—collision—was analyzed. Data libraries of other types of traffic disruptive events, e.g., inclement weather and work zones, should be mined.

• Further classify incidents into different categories based on their spatial and temporal characteristics.