
Secure and Scalable Network Packet Processing
Dennis Afanasev, Kevin Deems, Prof. Timothy Wood, Advisor

The George Washington University Computer Science

Secure TCP Processing FrameworkIntroduction
- OpenNetVM is a software-based NFV

platform for scalable and flexible network
computing

- Routers, firewalls or intrusion detection
systems, implemented in kernel space
perform sub-optimally for variable
network loads

- Shared core execution of network
functions is one of the latest major
improvements to the platform

- NFs can be put to sleep when they don’t
have packets, so that many child NFs can
be created to split up the workload over
the whole system

Results
- mTCP can be combined with openNetVM to provide TCP service

capabilities
- Normally, virtualized servers use a shared memory pool for data

structures, packets, and files to optimize performance
- This leads to fast throughput but decreases level of security
- Example: HTTP WebServer running as network function on OpenNetVM

- Shared memory pool between all clients
- All HTTP request parsing is done in the same process

- Proposal: Framework that isolates connection-based network functions
from each other while maintaining high throughput

Conclusion

- Performance with small file downloads
using proposed architecture is closely
maintained with traditional architecture

- Increase in performance with larger
sized files using custom architecture

 Future research
- ONVM’s flexible NF architecture allows

for integrations with other platforms, to
deliver scalability and communication

- Using new openNetVM features combined
with a virtual TCP stack, we can
effectively serve multiple clients while
preserving security and maintaining high
throughput

- Apply custom architecture to different
connection based services, such as Redis

- Provide dynamic NF chains, scaling, and
lifecycle management from web
interfaces

Recent Improvements

Figure 1: Simple HTTP web server implemented using
openNetVM and mTCP. The web server is
implemented as a network function that processes
GET requests.

Figure 2: HTTP web servers implemented as isolated
network functions serving individual clients. Security is
increased as GET request parsing is implemented on
seperate processes.

