THE GEORGE WASHINGTON UNIVERSITY

Computational Geometric System Identification

MAHDIS BISHEBAN, TAEYOUNG LEE

Flight Dynamics and Control Laboratory
Department of Mechanical and Aerospace Engineering
School of Engineering and Applied Science

Motivation

- Popularity of rotary-wing unmanned vehicle is increasing, because of simple mechanical structure small size, low manufacturing price, vast ability,
- Controlling UAV in adverse weather condition is an open problem,
- To address this problem, we need to know the precise dynamic model of UAV (Identification).

BACKGROUND

Attitude estimation has been studied in terms of

- Euler angles (Suffering from singularities)
- Quaternions (Challenging to represent sensitivities)
- Special orthogonal group (Using constrains or projections to avoid deviation of numerical trajectories of rotation matrices from $\mathrm{SO}(3)$)

ATTITUDE DYNAMICS OF A RIGID BODY

Attitude dynamics of rigid body :
A Lie group variational integrator:

$$
J \dot{\Omega}+\Omega \times J \Omega=M_{c},
$$

$$
\dot{R}=R \hat{\Omega}
$$

$\mathrm{SO}(3)=\left\{R \in \Re_{3 \times 3} \mid R^{T} R=I_{3 \times 3}, \operatorname{det}[R]=1\right\}$

$$
\begin{gathered}
h\left(J \Omega_{k}\right)^{\wedge}=F_{k} J_{d}-J_{d} F_{k}^{T} \\
R_{k+1}=R_{k} F_{k}
\end{gathered}
$$

$J \Omega_{k+1}=F_{k}^{T} J \Omega_{k}+h M_{c, k+1}$,

Method

Problem formulation: The goal is to estimate the inertia matrix $J(\boldsymbol{\theta})$ such that estimated trajectory $\{(R(t), \Omega(t)\}$ is consistent with the given input-output trajectory $\left\{\left(R_{z}(t), \Omega_{z}(t), M_{z}(t)\right\}\right.$, while satisfying inequality constraints $c_{j}(\boldsymbol{\theta}), j=1,2,3$ imposed by positive definiteness of J.

$$
J(\boldsymbol{\theta})=\left[\begin{array}{lll}
\theta_{1} & \theta_{2} & \theta_{3} \\
\theta_{2} & \theta_{4} & \theta_{5} \\
\theta_{3} & \theta_{5} & \theta_{6}
\end{array}\right]
$$

Constraints:

$$
\begin{gathered}
c_{1}(\boldsymbol{\theta})=\theta_{1}>0, \\
c_{2}(\boldsymbol{\theta})=-\theta_{2}^{2}+\theta_{1} \theta_{4}>0,
\end{gathered}
$$

$c_{3}(\boldsymbol{\theta})=-\theta_{6} \theta_{2}^{2}+2 \theta_{2} \theta_{3} \theta_{5}-\theta_{4} \theta_{3}^{2}-\theta_{1} \theta_{5}^{2}+\theta_{1} \theta_{4} \theta_{6}>0$.
Cost function:

$$
C(\boldsymbol{\theta})=\frac{1}{2 N} \sum_{k=1}^{N}\left\{\frac{1}{a_{1}} \tilde{\Omega}_{k}^{T} \tilde{\Omega}_{k}+\frac{1}{a_{2}} \operatorname{tr}\left[I_{3}-\tilde{R}_{k}\right]\right\} .
$$

Errors:

$$
\tilde{R}_{k}=R_{z_{k}}^{T} R_{k}, \quad \tilde{\Omega}_{k}=\Omega_{z_{k}}-\Omega_{k}
$$

Necessary conditions for optimality:

$$
\delta C_{a}(\boldsymbol{\theta})=\delta C(\boldsymbol{\theta})+\sum_{j=1}^{m} \lambda_{j} \delta c_{j}(\boldsymbol{\theta})=0
$$

$$
\lambda_{j} c_{j}(\boldsymbol{\theta})=0, \quad c_{j}(\boldsymbol{\theta}) \geq 0, \quad \lambda_{j} \leq 0
$$

Perturbation model on SO(3): we propose an intrinsic formulation with exponential map:

$$
R_{k}(\boldsymbol{\theta}+\Delta \boldsymbol{\theta})=R_{k}(\boldsymbol{\theta}) \exp \left(\hat{\eta}_{k}(\boldsymbol{\theta}+\Delta \boldsymbol{\theta})\right),
$$

where $\eta_{k}: \Re^{p} \rightarrow \Re^{3}, p$ is the number of unknown parameters. So perturbation is given by

$$
\begin{aligned}
& \frac{\partial R_{k}(\boldsymbol{\theta})}{\partial \theta_{i}}=R_{k}(\boldsymbol{\theta}) \frac{\partial \hat{\eta}_{k}(\boldsymbol{\theta})}{\partial \theta_{i}} \\
& \frac{\partial F_{k}(\boldsymbol{\theta})}{\partial \theta_{i}}=F_{k}(\boldsymbol{\theta}) \frac{\partial \hat{\zeta}_{k}(\boldsymbol{\theta})}{\partial \theta_{i}} .
\end{aligned}
$$

Output Perturbation:

$$
\begin{aligned}
& \frac{\partial \eta_{k+1}}{\partial \theta_{i}}=\left\{R_{k+1}^{T}\left(R_{k} \frac{\partial \hat{\eta}_{k}}{\partial \theta_{i}} F_{k}+R_{k} F_{k} \frac{\partial \hat{\zeta_{k}}}{\partial \theta_{i}}\right)\right\}^{\vee}, \\
& J \frac{\partial \Omega_{k+1}}{\partial \theta_{i}}=-\frac{\partial \hat{\zeta}_{k}}{\partial \theta_{i}} F_{k}^{T} J \Omega_{k}+F_{k}^{T} J \frac{\partial \Omega_{k}}{\partial \theta_{i}}+F_{k}^{T} \frac{\partial J}{\partial \theta_{i}} \Omega_{k} \\
&-\frac{\partial J}{\partial \theta_{i}} \Omega_{k+1}+h \frac{\partial M_{c, k+1}}{\partial \theta_{i}}, \\
& \frac{\partial \zeta_{k}}{\partial \theta_{i}}= F_{k}^{T}\left(\operatorname{tr}\left[F_{k} J_{d}\right] I_{3 \times 3}-F_{k} J_{d}\right)^{-1} \\
& \times\left\{h\left(J \frac{\partial \Omega_{k}}{\partial \theta_{i}}+\frac{\partial J}{\partial \theta_{i}} \Omega_{k}\right)^{\wedge}-F_{k} \frac{\partial J_{d}}{\partial \theta_{i}}+\frac{\partial J_{d}}{\partial \theta_{i}} F_{k}^{T}\right\}^{\vee} .
\end{aligned}
$$

Variation of cost function:
$\delta C(\boldsymbol{\theta})=\sum_{i=1}^{p}\left\{\sum_{k=1}^{N}\left(-\frac{1}{a_{1}}\left(\frac{\partial \Omega_{k}}{\partial \theta_{i}}\right)^{T} \tilde{\Omega}_{k}-\frac{1}{2 a_{2}} \operatorname{tr}\left[\tilde{R}_{k} \frac{\partial \hat{\eta}_{k}}{\partial \theta_{i}}\right]\right)\right\} \frac{\delta \theta_{i}}{N}$.

NUMERICAL EXAMPLES

Initial error $\left\\|\boldsymbol{\theta}_{0}-\boldsymbol{\theta}_{\text {exact }}\right\\|$	Estimation error $\left\\|\boldsymbol{\theta}-\boldsymbol{\theta}_{\text {exact }}\right\\|$	Number of Iterations
1.88	3.8×10^{-2}	45

Table 1: Simulation results for $\boldsymbol{\theta}_{\text {exact }}=[1,0.1,0.2,3,0.3,2]^{T}$

Figure 1: Attitude, (reference:green, initial:blue, estimated:red)

Figure 2: Angular velocity (rad/s)

Figure 3: Cost function $C(\boldsymbol{\theta})$

Figure 4: Attitude error $\left\|I_{3 \times 3}-R_{z, k}^{T} R_{k}\right\|$

Figure 5: Angular velocity error $\left\|\Omega_{z, k}-\Omega_{k}\right\|$

CONCLUSION AND FUTURE RESEARCH

- Identification problem is formulated as a constrained optimization problem,
- cost function is defined as the discrepancies between the reference and simulated trajectories,
- constraints are imposed to satisfy the properties of the unknown parameters,
- attitude is represented on $\mathrm{SO}(3)$,
- discrete attitude dynamics are represented by Lie group variational integrator to preserve attitude on SO(3),
perturbation model is constructed directly on the tangent space of $\mathrm{SO}(3)$,
- discrete-time necessary optimality conditions are constructed as variation of the cost function considering the constraints,
- proposed method can be applied to estimate of any unknown parameter of the attitude dynamics of the rigid body, e.g. blade flapping angle, and drag coefficients

