



### MOTIVATION

- Popularity of rotary-wing unmanned vehicle is increasing, because of simple mechanical structure, small size, low manufacturing price, vast ability,
- Controlling UAV in adverse weather condition is an open problem,
- To address this problem, we need to know the precise dynamic model of UAV (Identification).

#### ATTITUDE DYNAMICS OF A RIGID BODY

Attitude dynamics of rigid body :

$$J\dot{\Omega} + \Omega \times J\Omega = M_c,$$
$$\dot{R} = R\hat{\Omega},$$

 $SO(3) = \{ R \in \Re_{3 \times 3} \mid R^T R = I_{3 \times 3}, \det[R] = 1 \}$ 

## METHOD

**Problem formulation:** The goal is to estimate the inertia matrix  $J(\theta)$  such that estimated trajectory  $\{(R(t), \Omega(t))\}$  is consistent with the given input-output trajectory  $\{(R_z(t), \Omega_z(t), M_z(t))\}$ , while satisfying inequality constraints  $c_i(\boldsymbol{\theta}), j = 1, 2, 3$  imposed by positive definiteness of J.

$$J(\boldsymbol{\theta}) = \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 \\ \theta_2 & \theta_4 & \theta_5 \\ \theta_3 & \theta_5 & \theta_6 \end{bmatrix}$$

**Constraints:** 

$$c_1(\boldsymbol{\theta}) = \theta_1 > 0,$$
  

$$c_2(\boldsymbol{\theta}) = -\theta_2^2 + \theta_1 \theta_4 > 0,$$
  

$$a_3(\boldsymbol{\theta}) = -\theta_6 \theta_2^2 + 2\theta_2 \theta_3 \theta_5 - \theta_4 \theta_3^2 - \theta_1 \theta_5^2 + \theta_1 \theta_4 \theta_6 > 0.$$

**Cost function:** 

$$C(\boldsymbol{\theta}) = \frac{1}{2N} \sum_{k=1}^{N} \{ \frac{1}{a_1} \tilde{\Omega}_k^T \tilde{\Omega}_k + \frac{1}{a_2} \operatorname{tr}[I_3 - \tilde{R}_k] \}.$$

**Errors:** 

$$\tilde{R}_k = R_{z_k}^T R_k, \quad \tilde{\Omega}_k = \Omega_{z_k} - \Omega_k.$$

**Necessary conditions for optimality:** 

$$\delta C_a(\boldsymbol{\theta}) = \delta C(\boldsymbol{\theta}) + \sum_{j=1}^m \lambda_j \delta c_j(\boldsymbol{\theta}) = 0,$$
$$\lambda_j c_j(\boldsymbol{\theta}) = 0, \quad c_j(\boldsymbol{\theta}) \ge 0, \quad \lambda_j \le 0.$$

# **COMPUTATIONAL GEOMETRIC SYSTEM IDENTIFICATION**

MAHDIS BISHEBAN, TAEYOUNG LEE FLIGHT DYNAMICS AND CONTROL LABORATORY DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING School of Engineering and Applied Science

#### BACKGROUND

Attitude estimation has been studied in terms of

- Euler angles (Suffering from singularities)
- Quaternions (Challenging to represent sensitivities)
- Special orthogonal group (Using constrains or projections to avoid deviation of numerical trajectories of rotation matrices from SO(3))

A Lie group variational integrator:

$$h(J\Omega_k)^{\wedge} = F_k J_d - J_d F_k^T,$$
$$R_{k+1} = R_k F_k,$$
$$J\Omega_{k+1} = F_k^T J\Omega_k + hM_{c,k+1}$$

**Perturbation model on** SO(3): we propose an intrinsic formulation with exponential map:

 $R_k(\boldsymbol{\theta} + \Delta \boldsymbol{\theta}) = R_k(\boldsymbol{\theta}) \exp(\hat{\eta}_k(\boldsymbol{\theta} + \Delta \boldsymbol{\theta})),$ 

where  $\eta_k : \Re^p \to \Re^3$ , *p* is the number of unknown parameters. So perturbation is given by

$$\frac{\partial R_k(\boldsymbol{\theta})}{\partial \theta_i} = R_k(\boldsymbol{\theta}) \frac{\partial \hat{\eta}_k(\boldsymbol{\theta})}{\partial \theta_i},$$
$$\frac{\partial F_k(\boldsymbol{\theta})}{\partial \theta_i} = F_k(\boldsymbol{\theta}) \frac{\partial \hat{\zeta}_k(\boldsymbol{\theta})}{\partial \theta_i}.$$

#### **Output Perturbation:**

$$\frac{\partial \eta_{k+1}}{\partial \theta_i} = \{ R_{k+1}^T (R_k \frac{\partial \hat{\eta}_k}{\partial \theta_i} F_k + R_k F_k \frac{\partial \hat{\zeta}_k}{\partial \theta_i}) \}^{\vee}, \\ J \frac{\partial \Omega_{k+1}}{\partial \theta_i} = -\frac{\partial \hat{\zeta}_k}{\partial \theta_i} F_k^T J \Omega_k + F_k^T J \frac{\partial \Omega_k}{\partial \theta_i} + F_k^T \frac{\partial J}{\partial \theta_i} \Omega_k \\ -\frac{\partial J}{\partial \theta_i} \Omega_{k+1} + h \frac{\partial M_{c,k+1}}{\partial \theta_i}, \\ \frac{\partial \zeta_k}{\partial \theta_i} = F_k^T (\operatorname{tr}[F_k J_d] I_{3\times 3} - F_k J_d)^{-1} \\ \times \{ h(J \frac{\partial \Omega_k}{\partial \theta_i} + \frac{\partial J}{\partial \theta_i} \Omega_k)^{\wedge} - F_k \frac{\partial J_d}{\partial \theta_i} + \frac{\partial J_d}{\partial \theta_i} F_k^T \}^{\vee}. \end{cases}$$

#### Variation of cost function:

 $\delta C(\boldsymbol{\theta}) = \sum_{i=1}^{p} \{\sum_{k=1}^{N} \left(-\frac{1}{a_1} \left(\frac{\partial \Omega_k}{\partial \theta_i}\right)^T \tilde{\Omega}_k - \frac{1}{2a_2} \operatorname{tr}\left[\tilde{R}_k \frac{\partial \hat{\eta}_k}{\partial \theta_i}\right]\right)\} \frac{\delta \theta_i}{N}.$ 

Figure 1: Attitude, (reference:green, initial:blue, estimated:red)

# NUMERICAL EXAMPLES

| Initial error $\  \boldsymbol{\theta}_0 - \boldsymbol{\theta}_{exact} \ $ | Estimation error $\  oldsymbol{	heta} \ $ - |
|---------------------------------------------------------------------------|---------------------------------------------|
| 1.88                                                                      | $3.8 	imes 10^{-2}$                         |

**Table 1:** Simulation results for  $\theta_{exact} = [1, 0.1, 0.2, 3, 0.3, 2]^T$ 





**Figure 2:** Angular velocity (rad/s)

# **CONCLUSION AND FUTURE RESEARCH**

- Identification problem is formulated as a constrained optimization problem, • cost function is defined as the discrepancies be-
- tween the reference and simulated trajectories, • constraints are imposed to satisfy the properties of
- the unknown parameters,
- attitude is represented on SO(3),
- discrete attitude dynamics are represented by Lie group variational integrator to preserve attitude on SO(3),

- ficients





• perturbation model is constructed directly on the tangent space of SO(3),

• discrete-time necessary optimality conditions are constructed as variation of the cost function considering the constraints,

• proposed method can be applied to estimate of any unknown parameter of the attitude dynamics of the rigid body, e.g. blade flapping angle, and drag coef-