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MOTIVATION
• Popularity of rotary-wing unmanned vehicle is in-

creasing, because of simple mechanical structure,
small size, low manufacturing price, vast ability,
• Controlling UAV in adverse weather condition is an

open problem,
• To address this problem, we need to know the pre-

cise dynamic model of UAV (Identification).

BACKGROUND
Attitude estimation has been studied in terms of

• Euler angles (Suffering from singularities)
• Quaternions (Challenging to represent sensitivities)
• Special orthogonal group (Using constrains or pro-

jections to avoid deviation of numerical trajectories
of rotation matrices from SO(3))

ATTITUDE DYNAMICS OF A RIGID BODY

Attitude dynamics of rigid body :

JΩ̇ + Ω× JΩ = Mc,

Ṙ = RΩ̂,

SO(3) = {R ∈ <3×3 |RTR = I3×3, det[R] = 1}

A Lie group variational integrator:

h(JΩk)∧ = FkJd − JdFT
k ,

Rk+1 = RkFk,

JΩk+1 = FT
k JΩk + hMc,k+1,

CONCLUSION AND FUTURE RESEARCH

• Identification problem is formulated as a con-
strained optimization problem,
• cost function is defined as the discrepancies be-

tween the reference and simulated trajectories,
• constraints are imposed to satisfy the properties of

the unknown parameters,
• attitude is represented on SO(3),
• discrete attitude dynamics are represented by Lie

group variational integrator to preserve attitude on
SO(3),

• perturbation model is constructed directly on the
tangent space of SO(3),
• discrete-time necessary optimality conditions are

constructed as variation of the cost function consid-
ering the constraints,
• proposed method can be applied to estimate of any

unknown parameter of the attitude dynamics of the
rigid body, e.g. blade flapping angle, and drag coef-
ficients

NUMERICAL EXAMPLES

Initial error ‖θ0 − θexact‖ Estimation error ‖θ − θexact‖ Number of Iterations

1.88 3.8× 10−2 45

Table 1: Simulation results for θexact = [1, 0.1, 0.2, 3, 0.3, 2]T
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Figure 1: Attitude, (reference:green, initial:blue, esti-
mated:red)
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Figure 2: Angular velocity (rad/s)
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Figure 3: Cost function C(θ)
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Figure 4: Attitude error ‖I3×3 −RT
z,kRk‖
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Figure 5: Angular velocity error ‖Ωz,k − Ωk‖

METHOD

Problem formulation: The goal is to estimate the
inertia matrix J(θ) such that estimated trajectory
{(R(t),Ω(t)} is consistent with the given input-output
trajectory {(Rz(t),Ωz(t),Mz(t)}, while satisfying in-
equality constraints cj(θ), j = 1, 2, 3 imposed by pos-
itive definiteness of J .

J(θ) =

θ1 θ2 θ3
θ2 θ4 θ5
θ3 θ5 θ6


Constraints:

c1(θ) = θ1 > 0,

c2(θ) = −θ22 + θ1θ4 > 0,

c3(θ) = −θ6θ22 + 2θ2θ3θ5 − θ4θ23 − θ1θ25 + θ1θ4θ6 > 0.

Cost function:

C(θ) =
1

2N

N∑
k=1

{ 1

a1
Ω̃T

k Ω̃k +
1

a2
tr[I3 − R̃k]}.

Errors:

R̃k = RT
zk
Rk, Ω̃k = Ωzk − Ωk.

Necessary conditions for optimality:

δCa(θ) = δC(θ) +

m∑
j=1

λjδcj(θ) = 0,

λjcj(θ) = 0, cj(θ) ≥ 0, λj ≤ 0.

Perturbation model on SO(3): we propose an intrinsic
formulation with exponential map:

Rk(θ + ∆θ) = Rk(θ) exp(η̂k(θ + ∆θ)),

where ηk : <p → <3, p is the number of unknown pa-
rameters. So perturbation is given by

∂Rk(θ)

∂θi
= Rk(θ)

∂η̂k(θ)

∂θi
,

∂Fk(θ)

∂θi
= Fk(θ)

∂ζ̂k(θ)

∂θi
.

Output Perturbation:

∂ηk+1

∂θi
= {RT

k+1(Rk
∂η̂k
∂θi

Fk +RkFk
∂ζ̂k
∂θi

)}∨,

J
∂Ωk+1

∂θi
= −∂ζ̂k

∂θi
FT
k JΩk + FT

k J
∂Ωk

∂θi
+ FT

k

∂J

∂θi
Ωk

− ∂J
∂θi

Ωk+1 + h
∂Mc,k+1

∂θi
,

∂ζk
∂θi

= FT
k (tr[FkJd]I3×3 − FkJd)−1

×{h(J
∂Ωk

∂θi
+
∂J

∂θi
Ωk)∧ − Fk

∂Jd
∂θi

+
∂Jd
∂θi

FT
k }∨.

Variation of cost function:

δC(θ) =

p∑
i=1

{
N∑

k=1

(− 1

a1
(
∂Ωk

∂θi
)TΩ̃k −

1

2a2
tr[R̃k

∂η̂k
∂θi

])}δθi
N
.


