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Abstract

We propose to use machine learning to discover indices from the SST (Sea Surface
Temperature) field data and compare their prediction performance to that of the
Nino3.4 index on tasks related to ENSO. As a first step in this direction, this work
focuses on predicting the time-series of monthly temperature anomalies in Texas,
from the time series for the whole ocean SST field, ending 6 months prior.

Why Texas temperature anomalies?

Drought/heat wave in Texas in 2011 raised critical questions about the role of ocean
temperatures and the extent to which such events can be predicted in the future [3].

Why new features?

Many of the currently used climate indices, including Nino3.4, were originally defined
by human experts. The goal here is to obtain a data driven method to learn the
climate indices automatically.

What kind of feature generation methods?

In this project, we explore the use of clustering based approaches (specifically k-
means and spectral clustering) to generate features from the SST field.
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Results

All our experiments were performed on data from the MLOST dataset [4]. The data
was preprocessed by smoothing using a 3-month moving average filter. The
evaluation framework used in this paper, closely follows the “progressive
validation” error, analyzed in [6]. Prediction performance was then determined by

RMSE

computing two metrics, the Normalized RMSE (-'-=- ), and the correlation.
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Fig. 1. Absolute value of the Normalized RMSE (left) and Correlation (right) for a 1
month look-ahead task. Both plots show that 35 features suffice for good
prediction. This indicates the existence of a strong latent structure, since the
original input data had significantly larger number of features.

Predicted Time-series

Fig. 2. The predicted time series by using k-means + LASSO (left) and spectral +
LASSO (right).

Effect of the lag

Fig. 3. Above figure shows the performance (correlation on the left and NRMSE on
the right) for predicting Texas temperatures at different lags. The correlation of
the predicted time series decreases with the lag. However, the results remain
statistically significant for lags of up to 4 months.
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Fig. 4. Figure shows the features generated using k-means (top) and spectral
clustering (bottom). The features generated using k-means clustering do not
enforce any spatial contiguity constraints on the clusters and manage to capture a
significant number of known patterns in the SST field.

Summary of preliminary results

* Prediction using the proposed method outperformed the prediction

using Nino 3.4 indices.

« For shorter lags, the predicted time series have a significant
correlation with the Texas temperature anomalies.

Future directions

Study other supervised regression tasks related to ENSO, e.g.
prediction of temperature/precipitation in other regions.
Explore other notions of error, to quantify the prediction of

extremes.

Identify key regions in the SST field that enable better prediction.
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