
openNetVM:	Bringing	Elasticity	to	Enterprise	Networks	using	
Network	Function	Virtualization	on	Commodity	Hardware

Neel	Shah,	Philip	Lopreiato,	Warren	Smith,	Wei	Zhang,	and	Timothy	Wood
The	George	Washington	University

Abstract openNetVM
Container based NFs: Ease of user-
space process management brought to
networking
NF Manager: Orchestrates traffic flow
between various NFs to bring elasticity
Zero-Copy IO: Packets DMA’d into
shared memory granting NFs direct
access to data without copies
NUMA-Aware: Maximizes performance
by ensuring data in memory is local to a
thread’s CPU Socket
Interrupt-Free: DPDK’s poll mode driver
allows non-traditional network to
process incoming traffic at 10Gbps and
beyond

NFV	Platform

Load	Balancer

Firewall Intrusion	Detection

Quality	of	Service

• Traditionally, networks are comprised
of individual hardware components
called network functions:

Firewall

Intrusion Detection System (IDS)

Load Balancer

• This model is very expensive and
inflexible

• Trends in networking produced
network function virtualization (NFV)
• Cost effectiveness of software
• Flexibility of software
• All network functions on one host

• Modern NFV technology still does not
provide an elastic framework
• Adding new NF requires network
downtime

• Modern NFV technology is not able to
perform at the same line rates as
hardware networks

Challenges

Dynamic	Manager

NF	ready	
to	stop

Put	request	in
shared	memory

Manager	cleans	up
memory	and	
recycles	ID

NF	can	now
exit	cleanly

NF	Starts Enqueue info	to
shared	memory	

Manager	assigns
NF	an	ID

NF	can	receive
&	process	packets

• As networks grow, more middle boxes need to be deployed to scale efficiently
• openNetVM has a dynamic manager which makes networks elastic

• Aware of all active and newly created NFs
• Re organizes data structures upon NF creation and destruction

• Dynamic NF start and stop protocols let the size of the network scale in
proportion to traffic without downtime

• System can recover from and restart crashed NFs

TCP/IP	Library
• DPDK strips standard packet

headers from traffic since it avoids
the kernel

• More complicated network
functions (IDS, firewall) need TCP/IP
packet headers to perform their
tasks

• TCP/IP library exposes the standard
headers from the packets

Results

• Comparing SR-IOV enabled VMs and
DPDK against NetVM (our other
system that uses VMs for the same
goal), we achieve line rates that are
faster than SR-IOV VMs but not faster
than raw DPDK

• We expect openNetVM to be as fast
as raw DPDK or faster than it since
containers are much lighter


