
We introduce an optimization framework, namely
CRED, for cloud right-sizing under deadline and
locality constraints. Algorithms are proposed to
solve CRED optimization, which minimizes the
number of nodes needed by jointly optimizing
task scheduling and data placement while the
jobs’ deadlines and data locality are met. The
algorithms significantly outperform a first-fit
heuristic in terms of cloud-size

Conclusion

Introduction Theorems
•  Demand for cloud-based processing
frameworks continues to grow
•  Cloud providers seek efficient techniques that
deliver value to the business without violating
the Service Level Agreement
•  Cloud right-sizing makes clouds more cost-
effective

Problem Formulation
Consider a set of J jobs that need to be
processed by a cloud consisting of N physical
machines (i.e., nodes) in a timely fashion. Each
job j has a deadline dj and requires to access a
data object that is split into a set Cj of equal-
sized chunks. The chunks are spread over the
cloud in a distributed file system. Each node is
capable of hosting up to B data chunks and is
equipped with S VMs. We consider a cloud
framework similar to MapReduce, where jobs are
partitioned into small tasks that are processed in
parallel by different VMs. Thus, each node is able
to simultaneously process S tasks. In this paper,
we consider heterogeneous jobs with different
processing times. In particular, the time for each
job j to process a required data chunk, denoted
by Tj, can vary from job to job. A job is completed
once all required chunks are processed and will
then exit the system.

For cloud right-sizing, we may not necessarily
use all available nodes to process these jobs.
Our goal is to minimize the total number of active
nodes needed to complete the jobs satisfying (1)
a deadline constraint dj for each job j, (2) a data
locality constraint that requires each job to be
only assigned to nodes hosting its required data
chunks, and (3) physical resource constraints on
each node, i.e., B and S.

CRED: Cloud Right-sizing to Meet Execution
Deadlines and Data Locality

.
Sultan Alamro, Maotong Xu, Tian Lan, and Suresh Subramaniam

The George Washington University
Department of Electrical and Computer Engineering

Objective
Our goal is to minimize the total number of
active nodes needed to complete the jobs
satisfying a deadline constraint dj for each job
j, the data locality constraint and physical
resource constraints on each node, i.e., B and
S. We consider a time-slotted model where
jobs are scheduled to execute in fixed-length
time slots. Since each node is equipped with S
VMs, it has S time slots available at each time
t . Our control knobs in the optimization include
data chunk placement, job scheduling, and
cloud sizing.

Motivation
The nature of cloud applications is becoming
increasingly mission-critical and deadline
sensitive, e.g., traffic simulation and real time
web indexing. These applications are evolving
in the direction of demanding hard completion
times, and are likely to play crucial roles in the
national infrastructure in the not too distant
future.

Example Solution to CRED Problem

Evaluation

 Effect of number of blocks to the number of nodes

 Effect of the ratio between d1 and d2 type of jobs to the number of nodes needed

 The key idea from our illustrative example in Fig. 1
is that solving the CRED problem requires a joint
optimization of job scheduling and chunk
placement that addresses both execution deadline
and data locality constraints in a collaborative
fashion. In this section, we propose a novel
algorithm that harnesses workload aware chunk
placement to partition data chunks based on their
workload and schedules jobs to efficiently utilize
both space and computing resources on active
nodes, thus minimizing the number of nodes
required to process all jobs. To illustrate our key
solution concept.

Single Deadline:
Consider the chunk set Ci for deadline di. We sort
all chunks in descending order based on the
number of required time slots for each chunk, and
record the order in an array. The chunk recorded in
the head of array has the largest number of
required time slots. We place the last B chunks
and subtract S*di time slots, since we can
schedule at most S*di time slots in each node. If
the remaining number of required time slots for
chunk c is 0, we can remove the chunks c from the
chunk set Ci. We repeat this step until the first B
chunks has <= S*di time slots, then we can place
any B chunks into one node. It’s easy to see that
we keep adding new nodes until all chunks get
their required time slots scheduled. Processing
chunk c is only permitted on a node where chunk c
is placed. This is to improve data access efficiency
and task throughput. Thus, the algorithm is
guaranteed to generate a feasible solution to the
CRED problem.

Multiple Deadlines:
Our idea to solve CRED with multiple, arbitrary
deadlines is to iteratively apply single deadline
algorithm to incrementally find chunk placement
and time-slot scheduling to meet each deadline
one-by-one. More precisely, after finding a solution
to meet deadlines d1, d2, …, di, we fix the chunk
placement on existing nodes and optimize for the
next di+1 and minimize the number of new nodes.

Challenge
The CRED problem is challenging because it is
an integer optimization that is known to be NP-
hard in general. Even existing approximate
algorithm fall short simply due to the
overwhelming size of the underlying decision
space, which involves CNJ non-binary
variables and N(C+1) binary variables. Here C
is the total number of chunks, J the total
number of jobs, and N the total number of
nodes.

Figure 1

