Introduction

Residue number system (RNS) decomposes a large number into Smaller ones by utilizing the residues of a set of moduli. In the
field of digital computer arithmetic, RNS takes advantages in field of digital computer arithmetic, RNS takes adva inges in
decomposing the larger integers into a set of smaller integers in calculation independently (without carry propagation) and in parallel. Fundamentally, adapting photonics into the RNS arithmetic for signal process could benefit from
the fast execution time which is given by the photon's time-of
flight through the structure; flight nature of light that a momentum which in other words, an operation could be computed while switching,
the wavelength division multiplexing (WDM) capable of RNS the wavelength division multiplexing (WDM) capable of RNS
computing units achieve highly instruction level parallelism
with broadband nanophotonic devices.

In this study, we proposed a hybrid photonic-plasmonic (HPP) RNS adder with all-to-all sparse directional (ASD) structure, based on cascaded HPP 2×2 switches forming a crossbar with broad spectrum operating bandwidth [1].
Residue Number System
Residue number system uses remainders of different moduli to describe a given number [2]. It is a method to record a number, similar to decimal. However, it is a mixed
which means each digit has its own radix.

Residue Number
A number \boldsymbol{X} is represented by its residue, or remainder remainder obtained by dividing it by a modulus M
I $X=96, \mathrm{M}=11$, then
$|96|_{11}=96 \bmod 11=8$
Residue Number System
A number X is represented by its residue, or remainde remainder obtained by dividing it by a set of moduli $\boldsymbol{M}_{\boldsymbol{i}}$ If $\mathrm{X}=96, \mathrm{Y}=32, \mathrm{M}_{\mathrm{i}}=\{11,19,23\}$, then

The set of moduli $\left\{\mathbf{M}_{1}, \mathrm{M}_{2}, \ldots, \mathrm{M}_{\mathrm{n}}\right\}$ should be relative prime There are ΠM_{i} states in total. Normally we will use it to represent number 0 to $\Pi M_{i}-1$
RNS Arithmetic
Example: $\mathrm{X}+\mathrm{Y}=96+32=128$
$\begin{array}{r}\{8,1,4\} \\ +\{10,13,9\} \\ \hline\{18,14,13\}\end{array}$
$+\{10,13,9\}$
$\{18,14,13\}$
$\begin{aligned} &\{18,14,13\} \\ &= 17,1,13\end{aligned}$
$\left.|128|_{[11,19,23]}=-128 \bmod 19\right\}=\{7,1,13\}_{[11,19,23]}$ $128 \bmod 23$
No carry and independent
Good for high-performance computing
Applicable in addition, sub

Methods
$\mathbf{2 \times 2}$ Hybrid Photonic-Plasmonic Switch

Figure 1. Two States of a 2×2 Switch. (a) and (b): the conceptual schematic of two states in a 2×2 switch. (c) and
(d): the top view of the FDTD simulation results of two (d): the top view of the FDTD simulation results of two states in our HPP switch with two silicon waveguides (up indium tin oxide in between to achieve signal switching [3].

All-to-all sparse directional Modulo-5 Adder/Multiplier The first RNS adder design uses mesh grid, utilizing M(M-1) 2×2 switch [4]. Each operation uses (M-1) switch at one time, which wastes resources. Here we proposed a ASD RNS adder and multiplier with less switch.

Figure 2. Modulo-5 RNS Adder (a) and Multiplier (b) with Examples.
" +4 ": states for S_{1} to S_{10} are "BCBCBBCBBC"
" $\times 4$ ": states for S_{1} to S_{10} are "CCCCCCBBBB

- B/C represents bar/cross state

Lumerical FDTD and Interconnect
To evaluate our HPP switch, a single switch is implemented in Lumerical FDTD. Two states of HPP switch are shown as Figure 1 (c) and (d). To evaluate our adder and multiplier
Interconnect is used to measure the overall result.

Lumerical is a simulation software that focuses on optical side FDTD concentrates on the device design while the Interconnect provides the connection with different optical components.

Results

RNS Modulo-5 Adder/Multiplier Performance

Figure 3. Performance of operation $|2+2|_{5}=4$ (left), and operation $|2 \times 4|_{5}=3$ (right).

Modulo-M RNS Adder Performance
Table 1 shows the components requirement of architectural design of Mesh and ASD RNS models with modulo-M system Figure 4 shows the speed, energy, area, and speed-energy-area product (SEAP) of both design
Optical component including micro ring resonator (MMR) [5],
Mach Zehnder interferometer (MZI) [6], All-Optical switch (AOS) [7], and hybrid photonic-plasmonic (HPP) ITO switch

Parameter	Mesh RNS Model $[4]$	ASD RNS Model
\# of optical component	$\mathrm{M}(\mathrm{M}-1)$	$(\mathrm{M}-1)^{2} / 2+2$
\# of control circuit	M	$(\mathrm{M}-)^{2} / 2+2$
Logic circuit	-	$\left(\mathrm{M}-11^{2} / 2+2+2 \mathrm{MUX}\right.$ $(\mathrm{M}-1)^{2} / 2+2 \mathrm{NAND}$ gates $(\mathrm{M}-1)^{2} / 2+2$ AND gates

Table 1. Comparison of mesh RNS model and ASD RNS model in architecture design

Figure 4. Comparison of different type of optical switch in two designs

Application

Our proposed HPP device has a further feature that it is WDM capable. Here, we implemented a new design for RNS adder and multiplier, with additional ring resonators and photo-detectors a
the end of outputs (Figure 5). It allows multiple operations to the end of outputs (Figure 5). It allows multiple operations to
perform simultaneously, increasing the system efficiency. Several perform simultaneously, increasing the system efficiency. Sever bunches of light could be identified to corresponding operations.

Figure 5. WDM Modulo-5 RNS Schematic

With additional micro-ring and photon-detectors, multiple operations could be computed simultaneously. Every time the change of switches states has a response time. Therefore, our design is ideal for convolutional neural network, which has millions of multiplication-accumulation computation (MAC) Only one time set up allows multiple calculation, which increa the efficiency dramatically

Conclusion

Here we show a photonic residue number system (RNS) adder and multiplier based on an all-to-all, non-blocking, sparse directional crossbar. The RNS arithmetic is synergistically implemented by spatial routing of light using nanophotonic 2×2 switching building blocks, thus enabling a highly parallel compute engine. This one-shot programmable photonic processor utilized a extremely short execution time, only limited by the picosecond short time-of-flight through the 10's of micrometer compact optical router.

References

