Development and Characterization of Bovine Milk Ultrasound Responsive Exosomes ¹Jenna Osborn, ²Jessica E Pullan, ³James Froberg, Jacob Shreffler, ⁴Kara Gange, ⁵Todd Molden, ³Yongki Choi, Amanda Brooks, ²Sanku Mallik, ¹Kausik Sarkar THE GEORGE WASHINGTON ¹Mechanical and Aerospace Engineering, The George Washington University UNIVERSITY

¹Pharmaceutical Science, ²Physics, ³Health Nurtrition and ⁴Exercise Science, ⁵Animal Science, North Dakota State University

WASHINGTON, DC

Objective

Develop a new, nanosized ultrasound contrast agent with natural morphology

. Sánchez-Brotons et al²(2013) Other contrast agents (microbubbles, *liposomes, polymersomes) developed limited by large size, induced immune* response, and rapid clearance rates Background

Exosome: Natural Nanoparticle (40-130 nm)

Cytosol **MVEs**

Potential Benefits:

de la Torre Gomez et al¹ (2018)

- Natural morphology = reduced
- clearance rate of particles
- No immune response triggered
- Can extend to beyond vasculature and into tissue due to small size

Experimental Setup

Fig 1. Experimental set for measuring linear and non-linear scattering of echogenic exosomes

Creating Echogenic Exosomes

(B)

Fig 2. (A) & (B) Atomic Force Microscopy Images of Echogenic Exosomes (C) Size Distributions of Echogenic Exosomes measured by qNano

Average Size: ~100 nm **Concentration:** 4.1 ± 1.8 x 10⁹ particles/mg lyophilized powder

Linear and Nonlinear Scattering Behavior

Fig 4. hMSCs after 1 day (1D) and 3 days (3D) with different MB concentrations (% v/v)

Funded by the NSF, NIH, and the ARCS Foundation

Pages 222-223

In Vivo Imaging

36.2% increase in Brightness

Tail Vein of an NSG mouse

WITHOUT EXOSOMES

WITH EXOSOMES

3-fold increase in Brightness

Conclusions

Successful in making exosomes ultrasound responsive

Prove to be a promising new ultrasound contrast

Could be extended to possible targeted, drug delivery applications

References

¹de la Torre Gomez C, Goreham RV, Bech Serra JJ, Nann T and Kussmann M (2018) "Exosomics"—A Review of Biophysics, Biology and Biochemistry of Exosomes With a Focus on Human Breast Milk. Front. Genet. 9:92

Juan A. Sánchez-Brotons, Francisco J. López-Pardo, José E. López-Haldón, María J. ²Rodríguez-Puras. <u>Divertículo gigante de aurícula derecha: utilidad del contraste</u> ultrasonográfico. Revista Española de Cardiología, Volume 66, Issue 3, March 2013,

School of Engineering & Applied Science

THE GEORGE WASHINGTON UNIVERSITY