Introduction

- Asteroids and comets are of significant interes Science - Insight into early solar system formation Mining - vast quantities of useful materials Impact - high risk from hazardous Near-Earth asteroids - Near-Earth asteroids (NEAs) are especially interesting - Orbit close to the Earth and are easily accessible
- Many asteroids hold vast quantities of useful materials Asteroid mining: Precious metals, propulsion fuels, semiconductors Commercialization is feasible with huge amounts of possible profit - High probability of future asteroid impacts

- Low-thrust propulsion systems offer innovative options Electric propulsion offers much greater efficiency
Allows for greater velocity change with a reduced mass cost Key component for long duration missions with frequent thrusting Ras trajectory design is
Optimal trajectory design is complicated
Highly nonlinear and chaotic dynamics requires intuition by designer Using low-thrust propulsion adds additional difficulties in accurately
Astrodynamic trajectory design typically uses direct optimal control
- Large nonlinear programming problem inherently approximates the true optimal solution
High dimensionality of the solution makes it extremely computationally intensive

Gravitational Modeling

- Asteroids are extended bodies - not point masses Gravity is the key force in orbital mechanics
An accurate representation of gravity is critical to accurate and realistic analysis
- Spherical Harmonic approach is popular but not ideal - Model is only valid outside of circumscribing sphere - Composed of an infinite series - always results in an approximation Model will diverge when close to the surface and is not ideal for landing missions
Polyhedron Gravitational model used to represent the asteroid
Gravity is a function of the shape model
Globally valid and closed-form analytical solution for gravity - Exact potential assumes a constant density assumption - Accuracy is only dependent on the shape $U(r)=\frac{1}{2} G \sigma \sum_{e \in \text { edges }} r_{e} \cdot E_{e} \cdot r_{e} \cdot L_{e}-\frac{1}{2} G \sigma \sum_{f \in \text { faces }} r_{f} \cdot \boldsymbol{F}_{f} \cdot \boldsymbol{r}_{f} \cdot \omega_{f}$

Dynamics about the asteroid 4769 Castalia
Dynamics are very similar to the famous three-body problem

$$
\left[\begin{array}{c}
\dot{r} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
g(r)+h(v)+u
\end{array}\right]
$$

- Huge history of analytical tools allow for great insight into the dynamics
Analytical insight is critical to understanding the free motion around an asteroid
We require an accurate understanding of the motion under the influence of gravity alone
Efficient use of the limited oboard fuel is dependent on exploiting the natural dynamics of the asteroid environment
Jacobi Integral - single constant of motion which bounds the feasible regions in terms of "energy"

$$
J(r, \boldsymbol{v})=\frac{1}{2} \omega^{2}\left(x^{2}+y^{2}\right)+U(r)-\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)
$$

Spacecraft is operating around 4769 Castalia
Discovered in 1989, Castalia is a potentially hazardous asteroid and passes close to the Earth
In 1989, Castalia passed close enough to allow for high resolution radar imagery
High resolution shape is used in polyhedral gravity model

Asteroid 4769 Castalia

Simulation Results

Transfer between two periodic orbits of 4769 Castalia - Thruster represents a current electric propulsion $\approx 600 \mathrm{mN}$ Combining multiple iterations of the rechability computation allows for general transfers
Combining four iterations of the reachability set

- Each iteration of the reachability set enlarges the achievable states We choose a direction on the reachability set which lies closest to the target
$d=\sqrt{k_{x}\left(x_{f}-x_{t}\right)^{2}+k_{z}\left(z_{f}-z_{t}\right)^{2}+k_{\dot{x}}\left(\dot{x}_{f}-\dot{x}_{t}\right)^{2}+k_{\dot{z}}\left(\dot{z}_{f}-\dot{z}_{t}\right)^{2}}$
This iterative approach avoids the difficulty in choosing accurate initial guesses for optimization

Optimal Control is used to calculate the reachability set

$$
J=-\frac{1}{2}\left(x\left(t_{f}\right)-x_{n}\left(t_{f}\right)\right)^{T} Q\left(x\left(t_{f}\right)-x_{n}\left(t_{f}\right)\right)
$$

- Maximize the distance on the section using the low thrust propulsion
-Thruster magnitude is limited by physical system

$$
c(\boldsymbol{u})=\boldsymbol{u}^{T} \boldsymbol{u}-u_{m}^{2} \leq 0
$$

- Terminal constraints ensure intersection with the section $m_{1}=y=0$
$m_{2}=\left(\sin \phi_{1_{d}}\right)\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)-x_{1}^{2}=0$
$m_{3}=\left(\sin \phi_{2_{d}}\right)\left(x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)-x_{2}^{2}=0$
$m_{4}=\left(\sin \phi_{3_{d}}\right)\left(2 x_{3}^{2}+2 x_{3} \sqrt{x_{4}^{2}+2 x_{4}^{2}}\right)-x_{3}-\sqrt{x_{4}^{2}+x_{3}^{2}}=0$

Reachability on the Poincaré section

Reachability set on a Poincaré section

- Poincaré map is a useful tool in the analysis of dynamical systems
Enables visualization of complicated systems - intrinsic structure becomes visible to the engineer
Rather than considering the entire state (6D position and velocity) we simply investigate the intersections with a lower dimensional space This reduces the complexity of analyzing the dynamics and allows for visualization of highly complex dynamic interactions
- A periodic orbit on the Poincaré map is identified by fixed points x_{n}
points X_{n}
Using the low-thrust propulsion system of the spacecraft we can enlarge the space that is achievable
enlarge the space that is achievable - Reachability Set - the set of

The thruster of thy spem
The thruster of the spacecraft is used to design a transfer trajectory Thruster allows us to de the reachability set new state x_{f} provides additional insight

Conclusions

- Demonstrate a transfer around an asteroid using multiple reachability sets
- Each reachability set moves the spacecraft towards the target
- Alleviates the need for selecting accurate initial guesses
- Automatically gain insight into the feasible region of motion for the spacecraft
Future work will extend this principle to landing trajectories on asteroids
- Irregular shape of asteroids requires innovative techniques for controlling both position and orientation
Nonlinear control allows for the exploitation of the coupled dynamics Complex dynamics requires accurate integration schemes - Variationa Integrators
Successful extension of previous work in the circular restricted three-body problem

