

	

	

Hardware-based Cache Auditing to Aid Cache Timing
Channel Detection*

	

1. Background

Fan Yao, Hongyu Fang, Guru Venkataramani and Miloš Doroslovački
The George Washington University | Washington, DC

	

2. Cache Timing Channel Attacks

	

4. Hardware-based Cache Auditing

	

3. Existing Detections and Motivation

	

5. System Design & Exp. Setup

	

6. Cache Auditing Traces – Way Occupancy History

	

7. WOE Statistics

	

8. Conclusion

v  Timing channel attacks illicitly leaks sensitive secrets to
malicious parties

•  In covert channels, Trojan (sender) and Spy (receiver) collude to subvert
system security policy

•  In side channels, a benign victim unknowingly leaks sensitive data to a
malicious spy

0

2

4

6

8

W
ay

 O
cc

up
an

cy

Br
ea

kd
ow

n

Samples Over Time

Core3

Core2

Core1

Core0
0

2

4

6

8

W
ay

 O
cc

up
an

cy

Br
ea

kd
ow

n

Samples Over Time

Core3

Core2

Core1

Core0
0

2

4

6

8

W
ay

 O
cc

up
an

cy

Br
ea

kd
ow

n

Samples Over Time

Core3

Core2

Core1

Core0

0

2

4

6

8

W
ay

 O
cc

up
an

cy

Br
ea

kd
ow

n

Samples Over Time

Core3

Core2

Core1

Core0
0

2

4

6

8

W
ay

 O
cc

up
an

cy

Br
ea

kd
ow

n

Samples Over Time

Core3

Core2

Core1

Core0

0%
20%
40%
60%
80%

100%

Pr
ob

ab
ili

ty

Trigger Ratio (0~1.0, bin width 0.02)

0%
20%
40%
60%
80%

100%

Pr
ob

ab
ili

ty

Trigger Ratio (0~1.0, bin width 0.02)

0%
20%
40%
60%
80%

100%

Pr
ob

ab
ili

ty

Trigger Ratio (0~1.0, bin width 0.02)

0%
20%
40%
60%
80%

100%

Pr
ob

ab
ili

ty

Trigger Ratio (0~1.0, bin width 0.02)

0%
20%
40%
60%
80%

100%

Pr
ob

ab
ili

ty

Trigger Ratio (0~1.0, bin width 0.02)

v  Cache Timing Channel Attacks

•  Cache timing channels are extremely stealthy
•  Very challenging to detect due to various communication protocols

involved (parallel, serial; single group/multiple groups etc.)

applications / libraries / utilities

Socket/Pipes/IPC …

Operating System

Microarch. Resources

Hardware Infrastructure

…01010011…

Sender Receiver

L1 Cache
LLC
…

Spy primes Spy probes

Trojan sends 1

Trojan sends 0

Spy’s cache line Trojan’s cache line

A typical cache timing channel: Prime and Probe
that communicates by creating mutual evictions.

v  Software-based detection mechanism[1]

•  Based on high level statistics from Performance Counters (LLC misses)
•  No need for architecture supports
•  May be subject to high false negatives/positives

v  Hardware-based detection mechanism[2]

•  Finer-grained statistics and higher effectiveness
•  Do not provide high coverage and/or incur non-trivial overheads

v  A solution that captures the fundamental characteristic of
cache timing channels (high coverage) with minimal
design cost.

v  Capture the building block for
communicating secrets on caches

•  Cache conflicts occur at set level
•  To ensure conflicts, Trojan and/or Spy
 have to fill all the ways in a targeted set

Sets

Ways

A simplified view of modern set-
associative caches. Way replacement
policy is typically unknown.

v  Hardware-based Cache Auditing
•  Capture the atomic communicating semantic: Spy access è Trojan

Fill (full way occupancy) è spy access (full occupancy destroyed)
•  Track a single event: when the Trojan’s full way occupancy is destroyed

in the spy (or vice versa), WOE
•  No reliance on communication protocol modeling, fundamentally hard

to eliminate the events

v  Cache Auditing Design Overview
•  Bookkeeping ownership of cache lines (a

few extra bits, may already be maintained
by modern processors)

•  Recording WOE occurrence for each pair
(e.g., a pair of cores)

•  Interfacing with Operating System. Provide
statistics for further diagnosis

v  Experimental Setup
•  All experiments run with cycle-accurate simulation on Gem5

•  Simulate a 4-core OoO processor with 32KB private L1 Caches and
one shared 512KB L2 Cache

•  Full system mode with Linux kernel version 2.6.32

1
1
1

1

Cache
Ways

C0 C1 C2 C3

Way occupancy bookkeeping

SPEC2006 wd: (bzip2, lbm, hmmer, namd) 	 SPEC2006 wd: (bzip2, libquantum, mcf, specrand) 	 SPEC2006 wd: (GemsFDTD, h264ref, omnetpp, xalancbmk) 	

SPEC2006 wd: (GemsFDTD, hmmer, xalancbmk, namd) 	 Timing Channel: (bg1, Trojan, Spy, bg2) 	

SPEC2006 wd: (bzip2, lbm, hmmer, namd) 	SPEC2006 wd: (bzip2, libq, mcf, specr) 	

SPEC2006 wd: (Gems, h264r, omn, xala) 	SPEC2006 wd: (Gems, hmmer, xala, namd) 	

Timing Channel: (bg1, Trojan, Spy, bg2) 	

Histograms of WOE trigger ratio for
benign workloads and the attack.
(Trigger ratio = WOE_counts/
total_evictions for each pair)

All figures show the
breakdown of way
occupancy on a single
hot set for the four
applications running on
distinct cores.

Trojan and spy are run
together with two other
background processes.
Trojan is pinned on
core2 and Spy is
pinned on core 1.

•  We observed a way occupancy event that is
fundamentally related to cache channel attacks.

•  We proposed a cache auditor that collect WOE statistics
to aid cache channel detection.

•  Our results showed that the proposed method is effective
in identifying cache timing channels.

References
 [1] M. Chiappetta, S. Erkay, and C. Yilmaz. "Real time detection of
 cache-based side-channel attacks using hardware performance
 counters." Applied Soft Computing, 2016.
 [2] J. Chen, and G. Venkataramani. ”CC-hunter: Uncovering covert
 timing channels on shared processor hardware.” MICRO, 2014.

* This work was supported in part by Semiconductor Research
 Corporation (SRC).

