

Abstract

- Machine learning can close the gap of misunderstanding between people by automating sentence correction.
- We define categories of errors (aka *noise*) in an English sentence, beyond grammatical errors, such as synonym errors, sentence ordering errors, etc.
- Methods are proposed to inject targeted errors into sentences for building training sets.
- We will build an error-correction (aka *denoising*) system comprised of two parts: individual error classifiers followed by a number of error correctors (one per error type).

Background

- Recent studies suggest that machine learning sequence-tosequence (seq2seq) models can outperform grammaticallybased error correction.
- Seq2seq models transform an input sentence to another sentence, as in Machine Translation (MT). It's also called an end-to-end approach.
- Unlike in MT where there is plenty of training data (e.g. Chinese-English parallel texts), there is little training data for error correction.
- End-to-end correction systems not only need huge training datasets which are lacking, but also get 'clogged' by mixed errors.
- Grammatical errors are not the only reason to account for confusion.

Error Type

Article Or Determiner Wrong Collocation/Idio Spelling, Punctuation, e Proposition Noun Number Verb Tense Subject-Verb Agreemer Verb Form Redundancy Others

Automated Sentence Correction using Machine Learning

Zhantong Liang Advisor: Abdou Youssef

Department of Computer Science

Method & Results

	%	Recall
	14.31%	44.54%
m	12.75%	10.38%
etc.	12.47%	45.66%
	10.38%	49.03%
	9.38%	72.65%
	5.41%	28.15%
nt	4.93%	61.79%
	4.69%	57.26%
	4.65%	25.86%
	21.03%	23.28%

term dependency.

- Build a training dataset generator that generates synonym errors, reordering errors, and question-in-declarative-form errors (see Examples).
- Develop an error-factoring approach: Train error classifiers and a number of single-error correctors. The classifier will make use of the state-of-the-art word-embedding system called BERT, and the correctors will be based on so-called *Transformers*.

are better than the metric indicates.

Examples

Adjacent mo

Next mont

The studen

Will the stu

At home the dear

At home the be

The best way to

What is the bes

Conclusion

- it solvable.
- Our choice **O**T

Future Work

- called to optimize outcomes.

School of Engineering & Applied Science

THE GEORGE WASHINGTON UNIVERSITY

nth the stuc	lent will get his degree?	
	Correct synonym noise	
h the student will get his degree?		
	Correct reordering noise	
nt will get his degree next month?		
	Correct reordering noise	
Ident get his degree next month?		
manner to produce an apple pie is what?		
	Correct synonym noise	
est way to make an apple pie is what?		
	Correct reordering noise	
o make an apple pie at home is what?		
	Correct reordering noise	
st way to make an apple pie at home?		

• We define a novel sentence denoising problem and prove

(BERT Transformers) models and outperforms other neural network architecture. • Factoring noise makes sense due to the lack of training data and to the difficulty of precise black-box correction. • In addition to denoising, our system merges synergistically with grammatical error correction (GEC) systems.

• Understand the order in which denoising modules are

• Solve the catastrophic forgetting problem and transfer the knowledge of denoising to existing GEC models.

• Explore attention architectures for denoising problem.

• Automate noise generation with generative models like Generative Adversarial Networks (GANs).